版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市嘉定区市级名校2025届数学高二上期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若倾斜角为的直线过,两点,则实数()A. B.C. D.2.若a>0,b>0,且函数f(x)=4x3﹣ax2﹣2bx+2在x=1处有极值,则ab的最大值等于A.2 B.3C.6 D.93.椭圆上的一点M到其左焦点的距离为2,N是的中点,则等于()A.1 B.2C.4 D.84.已知椭圆的一个焦点坐标是,则()A.5 B.2C.1 D.5.已知圆:,是直线的一点,过点作圆的切线,切点为,,则的最小值为()A. B.C. D.6.若直线与曲线有两个公共点,则实数的取值范围为()A. B.C. D.7.若点P为抛物线y=2x2上的动点,F为抛物线的焦点,则|PF|的最小值为()A.2 B.C. D.8.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.9.抛物线的顶点在原点,对称轴是x轴,点在抛物线上,则抛物线的方程为()A. B.C. D.10.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg11.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.12.已知数列为等差数列,若,则()A.1 B.2C.3 D.4二、填空题:本题共4小题,每小题5分,共20分。13.在一村庄正西方向处有一台风中心,它正向东北方向移动,移动速度的大小为,距台风中心以内的地区将受到影响,若台风中心的这种移动趋势不变,则村庄所在地大约有_______小时会受到台风的影响.(参考数据:)14.已知等差数列的前项和为,则数列的前2022项的和为___________.15.设数列满足,则an=________16.已知向量,,不共线,点在平面内,若存在实数,,,使得,那么的值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,动点,满足,记点的轨迹为(1)请说明是什么曲线,并写出它的方程;(2)设不过原点且斜率为的直线与交于不同的两点,,线段的中点为,直线与交于两点,,请判断与的关系,并证明你的结论18.(12分)已知:,,:,,且为真命题,求实数的取值范围.19.(12分)如图,在三棱锥中,平面平面,且,(1)求证:;(2)求直线与所成角的余弦值20.(12分)设椭圆E:(a,b>0)过M(2,),N(,1)两点,O为坐标原点,(1)求椭圆E的方程;(2)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由.21.(12分)在平面直角坐标系中,已知圆,点P在圆上,过点P作x轴的垂线,垂足为是的中点,当P在圆M上运动时N形成的轨迹为C(1)求C的轨迹方程;(2)若点,试问在x轴上是否存在点M,使得过点M的动直线交C于两点时,恒有?若存在,求出点M的坐标;若不存在,请说明理由22.(10分)已知椭圆:()的左、右焦点分别为,焦距为,过点作直线交椭圆于两点,的周长为.(1)求椭圆的方程;(2)若斜率为的直线与椭圆相交于两点,求定点与交点所构成的三角形面积的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据直线的倾斜角和斜率的关系得到直线的斜率为,再根据两点的斜率公式计算可得;【详解】解:因为直线的倾斜角为,所以直线的斜率为,所以,解得;故选:C2、D【解析】求出导函数,利用函数在极值点处的导数值为0得到a,b满足的条件;利用基本不等式求出ab的最值;注意利用基本不等式求最值需注意:一正、二定、三相等解:∵f′(x)=12x2﹣2ax﹣2b又因为在x=1处有极值∴a+b=6∵a>0,b>0∴当且仅当a=b=3时取等号所以ab的最大值等于9故选D点评:本题考查函数在极值点处的导数值为0、考查利用基本不等式求最值需注意:一正、二定、三相等3、C【解析】先利用椭圆定义得到,再利用中位线定理得即可.【详解】由椭圆方程,得,由椭圆定义得,又,,又为的中点,为的中点,线段为中位线,∴.故选:C.4、C【解析】根据题意椭圆焦点在轴上,且,将椭圆方程化为标准形式,从而得出,得出答案.【详解】由焦点坐标是,则椭圆焦点在轴上,且将椭圆化为,则由,焦点坐标是,则,解得故选:C5、A【解析】根据题意,为四边形的面积的2倍,即,然后利用切线长定理,将问题转化为圆心到直线的距离求解.【详解】圆:的圆心为,半径,设四边形的面积为,由题设及圆的切线性质得,,∵,∴,圆心到直线的距离为,∴的最小值为,则的最小值为,故选:A6、D【解析】由题可知,曲线表示一个半圆,结合半圆的图像和一次函数图像即可求出的取值范围.【详解】由得,画出图像如图:当直线与半圆O相切时,直线与半圆O有一个公共点,此时,,所以,由图可知,此时,所以,当直线如图过点A、B时,直线与半圆O刚好有两个公共点,此时,由图可知,当直线介于与之间时,直线与曲线有两个公共点,所以.故选:D.7、D【解析】根据抛物线的定义得出当点P在抛物线的顶点时,|PF|取最小值.【详解】根据题意,设抛物线y=2x2上点P到准线的距离为d,则有|PF|=d,抛物线的方程为y=2x2,即x2=y,其准线方程为y=-,∴当点P在抛物线的顶点时,d有最小值,即|PF|min=.故选:D8、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.9、B【解析】首先根据题意设出抛物线的方程,利用点在曲线上的条件为点的坐标满足曲线的方程,代入求得参数的值,最后得到答案.【详解】解:根据题意设出抛物线的方程,因为点在抛物线上,所以有,解得,所以抛物线的方程是:,故选:B.10、D【解析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误故选D11、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B12、D【解析】利用等差数列下标和的性质求值即可.【详解】由等差数列下标和性质知:.故选:D二、填空题:本题共4小题,每小题5分,共20分。13、4【解析】结合勾股定理求得正确答案.【详解】如图,设村庄为A,开始台风中心的位置为B,台风路径为直线,因为点A到直线的距离为,∴村庄所在地受到台风影响的时间约为:(小时).故答案为:本卷包括必考题和选考题两部分.第17题~第21题为必考题,每个试题考生都必须作答第22题~第23题为选考题,考生根据要求作答14、【解析】先设等差数列的公差为,根据题中条件,求出首项和公差,得出前项和,再由裂项相消的方法,即可求出结果.【详解】设等差数列的公差为,因为,,所以,解得,因此,所以,所以数列的前2022项的和为.故答案:.15、【解析】先由题意得时,,再作差得,验证时也满足【详解】①当时,;当时,②①②得,当也成立.即故答案为:16、1【解析】通过平面向量基本定理推导出空间向量基本定理得推论.【详解】因为点在平面内,则由平面向量基本定理得:存在,使得:即,整理得:,又,所以,,,从而.故答案为:1三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)椭圆,(2),证明见解析【解析】(1)结合椭圆第一定义直接判断即可求出的轨迹为;(2)设直线的方程为,,,联立椭圆方程,写出韦达定理;由中点公式求出点,进而得出直线方程,联立椭圆方程求出,结合弦长公式可求,可转化为,结合韦达定理可化简,进而得证.【小问1详解】设,,则因为,满足,即动点表示以点,为左、右焦点,长轴长为4,焦距为的椭圆,其轨迹的方程为;【小问2详解】可以判断出,下面进行证明:设直线的方程为,,,由方程组,得①,方程①判别式为,由,即,解得且由①得,,所以点坐标为,直线方程为,由方程组,得,,所以又所以.18、【解析】由,为真,可得对任意的恒成立,从而分和求出实数的取值范围,再由,,可得关于的方程有实根,则有,从而可求出实数的取值范围,然后求交集可得结果【详解】解:可化为.若:,为真,则对任意的恒成立.当时,不等式可化为,显然不恒成立,当时,有且,所以.①若:,为真,则关于的方程有实根,所以,即,所以或.②又为真命题,故,均为真命题.所以由①②可得的取值范围为.19、(1)证明见解析;(2).【解析】(1)过点作交的延长线于点,连接,由,,证出平面,即可证出.(2)以为原点,的方向分别为轴正方向,建立空间直角坐标系,写出相应点的坐标,利用,即可得到答案.【小问1详解】过点作交的延长线于点,连接,因为,所以,又因为,所以,所以,即,.因为,所以平面,因为平面,所以【小问2详解】因为平面平面,平面平面,所以平面,以为原点,的方向分别为轴正方向,建立如图所示的空间直角坐标系,则,可得,因为,所以直线与所成角的余弦值为20、(1);(2)存在,,.【解析】(1)根据椭圆E:(a,b>0)过M(2,),N(,1)两点,直接代入方程解方程组即可.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,当切线斜率存在时,设该圆的切线方程为,联立,根据,结合韦达定理运算,同时满足,则存在,否则不存在,当切线斜率不存在时,验证即可;在该圆的方程存在时,利用弦长公式结合韦达定理得到求解.【详解】(1)因为椭圆E:(a,b>0)过M(2,),N(,1)两点,所以,解得,所以,所以椭圆E的方程为.(2)假设存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且,设该圆的切线方程为,联立得,则△=,即,,,要使,需使,即,所以,所以,又,所以,所以,即或,因为直线为圆心在原点的圆的一条切线,所以圆的半径为,,所以,则所求的圆为,此时圆的切线都满足或,而当切线的斜率不存在时切线为与椭圆的两个交点为或满足,综上,存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且.因为,所以,,①当时,,因为,所以,所以,所以,当且仅当时取”=”.②当时,.③当AB的斜率不存在时,两个交点为或,所以此时,综上,|AB|的取值范围为,即:【点睛】思路点睛:1、解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题常常用“点差法”解决,往往会更简单2、设直线与椭圆的交点坐标为A(x1,y1),B(x2,y2),则(k为直线斜率)注意:利用公式计算直线被椭圆截得的弦长是在方程有解的情况下进行的,不要忽略判别式大于零21、(1);(2)不存在,理由见解析.【解析】(1)设,根据中点坐标公式用N的坐标表示P的坐标,将P的坐标代入圆M的方程化简即可得N的轨迹方程;(2)假设存在,设M为(m,0),设直线l斜率为k,表示其方程,l方程和椭圆方程联立,根据韦达定理得根与系数关系,由,得,代入根与系数的关系求k与m关系即可判断.【小问1详解】设,因为N为的中点,,又P点在圆上,,即C轨迹方程为;【小问2详解】不存在满足条件的点M,理由如下:假设存在满足条件的点M,设点M的坐标为,直线的斜率为k,则直线的方程为,由消去y并整理,得,设,则由,得,即,将代入上式并化简,得将式代入上式,有,解得,而,求得点M在椭圆外,若与椭圆无交点不满足条件,所以不存在这样的点M【点睛】本题关键是由得,将几何关系转化为代数关系进行计算.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度房地产销售代理合同:别墅销售代理
- 机器拉带市场发展现状调查及供需格局分析预测报告
- 2024年度常州消防工程电气设备安装合同
- 榻榻米专用座椅市场需求与消费特点分析
- 膝上桌市场发展预测和趋势分析
- 2024年度企业信息安全监测与预警合同
- 2024年度商业保理合同保理融资额度与利率
- 赛车市场发展预测和趋势分析
- 科学用棱镜市场需求与消费特点分析
- 2024年度国际餐饮文化交流活动策划合同
- 唱游子吟小儿垂钓课件小学音乐苏少01课标版三年级上册课件1
- 北京科技大学第二批非教学科研岗位招考聘用(必考题)模拟卷和答案
- 社团面试评分表
- 智慧园区 物流基地集装箱货堆场智能管理平台建设方案
- 血清转氨酶异常病因分析
- PDCA提高护理管道标识规范率
- 世界未解之谜英文版
- 中小跨径公路桥梁设计课件
- 放射培训考试习题及答案
- 译林牛津版9A-Unit8-Detective-Stories-Reading-2公开课优质课件
- 邯郸市政府采购办事指南
评论
0/150
提交评论