江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题含解析_第1页
江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题含解析_第2页
江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题含解析_第3页
江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题含解析_第4页
江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市时杨中学2025届高二数学第一学期期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛物线的准线方程为()A B.C. D.2.记Sn为等差数列{an}的前n项和,给出下列4个条件:①a1=1;②a4=4;③S3=9;④S5=25,若只有一个条件不成立,则该条件为()A.① B.②C.③ D.④3.下列结论中正确的个数为()①,;②;③A.0 B.1C.2 D.34.已知点分别为圆与圆的任意一点,则的取值范围是()A. B.C. D.5.方程所表示的曲线为()A.射线 B.直线C.射线或直线 D.无法确定6.在等差数列{an}中,a1=1,,则a7=()A.13 B.14C.15 D.167.已知是边长为6的等边所在平面外一点,,当三棱锥的体积最大时,三棱锥外接球的表面积为()A. B.C. D.8.已知{}为等比数列.,则=()A.—4 B.4C.—4或4 D.169.数列,则是这个数列的第()A.项 B.项C.项 D.项10.某高校甲、乙两位同学大学四年选修课程的考试成绩等级(选修课的成绩等级分为1,2,3,4,5,共五个等级)的条形图如图所示,则甲成绩等级的中位数与乙成绩等级的众数分别是()A.3,5 B.3,3C.3.5,5 D.3.5,411.在等差数列中,若,,则公差d=()A. B.C.3 D.-312.下列命题中是真命题的是()A.“”是“”的充分非必要条件B.“”是“”的必要非充分条件C.在中“”是“”的充分非必要条件D.“”是“”的充要条件二、填空题:本题共4小题,每小题5分,共20分。13.瑞士数学家欧拉(Euler)1765年在所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,,则欧拉线的方程为______14.甲乙参加摸球游戏,袋子中装有3个黑球和1个白球,球的大小、形状、质量等均一样,若从袋中有放回地取1个球,再取1个球,若取出的两个球同色,则甲胜,若取出的两个球不同色则乙胜,求乙获胜的概率为_____15.椭圆方程为椭圆内有一点,以这一点为中点的弦所在的直线方程为,则椭圆的离心率为______16.已知抛物线的焦点为,点在上,且,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,底面为正方形,,直线垂直于平面分别为的中点,直线与相交于点.(1)证明:与不垂直;(2)求二面角的余弦值.18.(12分)已知直线l过点A(﹣3,1),且与直线4x﹣3y+t=0垂直(1)求直线l的一般式方程;(2)若直线l与圆C:x2+y2=m相交于点P,Q,且|PQ|=8,求圆C的方程19.(12分)如图,在直三棱柱中,,,与交于点,为的中点,(1)求证:平面;(2)求证:平面平面20.(12分)三棱柱中,侧面为菱形,,,,(1)求证:面面;(2)在线段上是否存在一点M,使得二面角为,若存在,求出的值,若不存在,请说明理由21.(12分)已知函数.(I)当时,求曲线在处的切线方程;(Ⅱ)若当时,,求的取值范围.22.(10分)已知椭圆,直线.(1)若直线与椭圆相切,求实数的值;(2)若直线与椭圆相交于A、两点,为线段的中点,为坐标原点,且,求实数的值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据抛物线方程求出,进而可得焦点坐标以及准线方程.【详解】由可得,所以焦点坐标为,准线方程为:,故选:D.2、B【解析】根据等差数列通项公式及求和公式的基本量计算,对比即可得出结果.【详解】设等差数列{an}的公差为,,,,即,即.当,时,①③④均成立,②不成立.故选:B3、C【解析】构造函数利用导数说明函数的单调性,即可判断大小,从而得解;【详解】解:令,,则,所以在上单调递增,所以,即,即,,故①正确;令,,则,所以当时,,当时,,所以在上单调递减,在上单调递增,所以,即恒成立,所以,故②正确;令,,当时,当时,所以在上单调递减,在上单调递增,所以,即,所以,当且仅当时取等号,故③错误;故选:C4、B【解析】先判定两圆的位置关系为相离的关系,然后利用几何方法得到的取值范围.【详解】的圆心为,半径,的圆心为,半径,圆心距,∴两圆相离,∴,故选:B.5、C【解析】将方程化为或,由此可得所求曲线.【详解】由得:或,即或,方程所表示的曲线为射线或直线.故选:C.6、A【解析】利用等差数列的基本量,即可求解.【详解】设等差数列的公差为,,解得:,则.故选:A7、C【解析】由题意分析可得,当时三棱锥的体积最大,然后作图,将三棱锥还原成正三棱柱,按照正三棱柱外接球半径的计算方法来计算,即可计算出球半径,从而完成求解.【详解】由题意可知,当三棱锥的体积最大时是时,为正三角形,如图所示,将三棱锥补成正三棱柱,该正三棱柱的外接球就是三棱锥的外接球,而正三棱柱的外接球球心落在上下底面外接圆圆心连线的中点上,设外接圆半径为,三棱锥外接球半径为,由正弦定理可得:,所以,,所以三棱锥外接球的表面积为.故选:C.8、B【解析】根据题意先求出公比,进而用等比数列通项公式求得答案.【详解】由题意,设公比为q,则,则.故选:B.9、A【解析】根据数列的规律,求出通项公式,进而求出是这个数列的第几项【详解】数列为,故通项公式为,是这个数列的第项.故选:A.10、C【解析】将甲的所有选修课等级从低到高排列可得甲的中位数,由图可知乙的选修课等级的众数.【详解】由条形图可得,甲同学共有10门选修课,将这10门选修课的成绩等级从低到高排序后,第5,6门的成绩等级分别为3,4,故中位数为,乙成绩等级的众数为5.故选:C.11、C【解析】由等差数列的通项公式计算【详解】因为,,所以.故选:C【点睛】本题考查等差数列的通项公式,利用等差数列通项公式可得,12、B【解析】根据充分条件、必要条件、充要条件的定义依次判断.【详解】当时,,非充分,故A错.当不能推出,所以非充分,,所以是必要条件,故B正确.当在中,,反之,故为充要条件,故C错;当时,,,,充分条件,因为,当时成立,非必要条件,故D错.故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据给定信息,利用三角形重心坐标公式求出的重心,再结合对称性求出的外心,然后求出欧拉线的方程作答.【详解】因的顶点,,,则的重心,显然的外心在线段AC中垂线上,设,由得:,解得:,即点,直线,化简整理得:,所以欧拉线的方程为.故答案:14、##0.375【解析】先算出有放回地取两次的取法数,再算出取出两球不同色的取法数,根据古典概型的概率公式计算即可求得答案.【详解】有放回地取两球,共有种取法,两次取球不同色的取法有种,故乙获胜的概率为,故答案为:15、【解析】设,利用“点差法”得到,即可求出离心率.【详解】设直线与椭圆交于,则.因为AB中点,则.又,相减得:.所以所以所以,所以,即离心率.故答案为:.16、【解析】由抛物线的焦半径公式可求得的值.【详解】抛物线的准线方程为,由抛物线的焦半径公式可得,解得.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)以点为坐标原点,、、所在直线分别为、、轴建立空间直角坐标系,求出点的坐标,计算得出,即可证得结论成立;或利用反证法;(2)利用空间向量法即求.【小问1详解】方法一:如图以点为坐标原点,、、所在直线分别为、、轴建立如下图所示的空间直角坐标系,则、、、、设,因为,,因为,所以,得,即点,因为,,所以,故与不垂直方法二:假设与垂直,又直线平面平面,所以.而与相交,所以平面又平面,从而又已知是正方形,所以与不垂直,这产生矛盾,所以假设不成立,即与不垂直得证.【小问2详解】设平面的法向量为,又,因为,所以,令,得.设平面的法向量为,因为,所以,令,得.因为.显然二面角为钝二面角,所以二面角的余弦值是.18、(1)3x+4y+5=0(2)x2+y2=17【解析】(1)由垂直关系得过直线l斜率,由点斜式化简即可求解l的一般式方程;(2)结合勾股定理建立弦心距(由点到直线距离公式求解),半弦长,圆半径的基本关系,解出,即可求解圆C的方程【小问1详解】因为直线l与直线4x﹣3y+t=0垂直,所以直线l的斜率为,故直线l的方程为,即3x+4y+5=0,因此直线l的一般式方程为3x+4y+5=0;【小问2详解】圆C:x2+y2=m的圆心为(0,0),半径为,圆心(0,0)到直线l的距离为,则半径满足m=42+12=17,即m=17,所以圆C:x2+y2=1719、(1)证明见解析(2)证明见解析【解析】(1)根据直棱柱的性质、平行四边形的性质,结合三角形中位线定理、线面平行的判定定理进行证明即可;(2)根据直棱柱的性质、菱形的判定定理和性质,结合线面垂直的判定定理、面面垂直的判定定理进行证明即可.【小问1详解】在直三棱柱中,,且四边形平行四边形,又,则为的中点,又为的中点,故,即:,且平面,平面,所以平面;【小问2详解】在直三棱柱中,平面,平面,则,且,,平面,故平面,因为平面,所以,又在平行四边形中,,则四边形菱形,所以,且,平面,故平面,因为平面,所以平面平面.20、(1)证明见解析;(2)【解析】(1)取BC的中点O,连结AO、,在三角形中分别证明和,再利用勾股定理证明,结合线面垂直的判定定理可证明平面,再由面面垂直的判定定理即可证明结果.(2)建立空间直角坐标系,假设点M存在,设,求出M点坐标,然后求出平面的法向量,利用空间向量的方法根据二面角的平面角为可求出的值.【详解】(1)取BC的中点O,连结AO,,,为等腰直角三角形,所以,;侧面为菱形,,所以三角形为为等边三角形,所以,又,所以,又,满足,所以;因为,所以平面,因为平面中,所以平面平面.(2)由(1)问知:两两垂直,以O为坐标原点,为轴,为轴,为轴建立空间之间坐标系.则,,,,若存在点M,则点M在上,不妨设,则有,则,有,,设平面的法向量为,则解得:平面的法向量为则解得:或(舍)故存在点M,.【点睛】本题考查立体几何探索是否存在的问题,属于中档题.方法点睛:(1)判断是否存在的问题,一般先假设存在;(2)设出点坐标,作为已知条件,代入计算;(3)根据结果,判断是否存在.21、(1)(2)【解析】(Ⅰ)先求的定义域,再求,,,由直线方程的点斜式可求曲线在处的切线方程为(Ⅱ)构造新函数,对实数分类讨论,用导数法求解.试题解析:(I)定义域为.当时,,曲线在处的切线方程为(II)当时,等价于设,则,(i)当,时,,故在上单调递增,因此;(ii)当时,令得.由和得,故当时,,在单调递减,因此.综上,的取值范围是【考点】导数的几何意义,利用导数判断函数的单调性【名师点睛】求函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论