版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
【讲练课堂】20222023学年八年级数学上册尖子生同步培优题典【苏科版】专题2.12第2章轴对称图形单元测试(培优提升卷)姓名:__________________班级:______________得分:_________________注意事项:本试卷满分150分,试题共27题.选择8道、填空10道、解答9道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022•宿豫区校级开学)如图图案中不是轴对称图形的是()A. B. C. D.【分析】根据轴对称的定义,结合各选项所给图形进行判断即可.【解析】A、这个图形不是轴对称图形,故此选项符合题意;B、这个图形是轴对称图形,故此选项不符合题意;C、这个图形是轴对称图形,故此选项不符合题意;D、这个图形是轴对称图形,故此选项不符合题意.故选:A.2.(2021秋•盱眙县期末)如果等腰三角形两边长是5cm和2cm,那么它的周长是()A.7cm B.9cm C.9cm或12cm D.12cm【分析】因为题中没有说明已知两边哪个是底,哪个是腰,所以要分情况进行讨论.【解析】当三边是2cm,2cm,5cm时,不符合三角形的三边关系;当三角形的三边是5cm,5cm,2cm时,符合三角形的三边关系,此时周长是5+5+2=12cm.故选:D.3.(2021秋•靖江市期末)已知a,b是△ABC的两条边长,且a2+b2﹣2ab=0,则△ABC的形状是()A.等腰三角形 B.等边三角形 C.锐角三角形 D.不确定【分析】由a2+b2﹣2ab=0,可得出a=b,结合a,b是△ABC的两条边长,即可得出△ABC为等腰三角形.【解析】∵a2+b2﹣2ab=0,即(a﹣b)2=0,∴a﹣b=0,∴a=b.又∵a,b是△ABC的两条边长,∴△ABC为等腰三角形.故选:A.4.(2021秋•灌云县期中)如图所示,是一块三角形的草坪,现要在草坪上建一凉亭供大家休息,要使凉亭到草坪三条边的距离相等,凉亭的位置应选在()A.△ABC的三条中线的交点 B.△ABC三条角平分线的交点 C.△ABC三条高所在直线的交点 D.△ABC三边的中垂线的交点【分析】由于凉亭到草坪三条边的距离相等,所以根据角平分线上的点到边的距离相等,可知是△ABC三条角平分线的交点.由此即可确定凉亭位置.【解析】∵凉亭到草坪三条边的距离相等,∴凉亭选择△ABC三条角平分线的交点.故选:B.5.(2022•建湖县一模)如图,每个小方格的边长为1,A,B两点都在小方格的顶点上,点C也是图中小方格的顶点,并且△ABC是等腰三角形,那么点C的个数为()A.1 B.2 C.3 D.4【分析】根据“两圆一线”画图找点即可.【解析】如图,C点与P、Q、R重合时,均满足△ABC是等腰三角形,故选:C.6.(2022春•阜宁县期末)如图将长方形ABCD沿EF折叠,B、C分别落在点H、G的位置,延长EH交边CD于点M.下列说法不正确的是()A.∠1<∠2 B.∠2=∠3 C.∠MEB=2∠2 D.∠2与∠4互补【分析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,根据矩形的性质可得AB∥CD,∠B=90°,再根据折叠可得:∠B=∠GHE=90°,从而可得GH∥FN,进而可得∠1=∠MFN,即可判断A;根据角平分线和平行线的性质即可判断B和C;根据平角定义即可判断D.【解析】过点F作FN⊥EH,垂足为N,且点N在线段EH上,∴∠FNE=90°,∵四边形ABCD是矩形,∴AB∥CD,∠B=90°,由折叠得:∠B=∠GHE=90°,∴∠GHE=∠FNE=90°,∴GH∥FN,∴∠1=∠MFN,∵∠2=∠MFN+∠EFN,∴∠1<∠2,故A不符合题意;∵AB∥CD,∴∠2=∠FEB,由折叠得:∠FEB=∠3,∴∠2=∠3,故B不符合题意;∵∠FEB=∠3,∴∠MEB=2∠3,∵∠3=∠2,∴∠MEB=2∠2,故C不符合题意;∵ME≠EF,∴∠2≠∠EMF,∵∠4+∠EMF=180°,∴∠4与∠2不一定互补,故D符合题意;故选:D.7.(2022春•海门市期末)已知射线OC平分∠AOB,点P、M、N分别在射线OC、OA、OB上,且PM=PN,PE⊥OA于点E,若∠PNO=110°,则∠EPM的度数为()A.20° B.35° C.55° D.70°【分析】根据等腰三角形的性质和ASA证明△MOP≌△NOP,再根据全等三角形的性质和三角形外角的性质进行解答即可.【解析】连接MN,∵射线OC平分∠AOB,PM=PN,∴OP⊥MN,∠MOP=∠NOP,∴∠MPO=∠NPO,在△MOP与△NOP中,,∴△MOP≌△NOP(ASA),∴∠OMP=∠PNO=110°,∴∠EPM=∠OMP﹣∠OEP=110°﹣90°=20°.故选:A.8.(2020秋•海安市月考)已知如图等腰△ABC,AB=AC,∠BAC=120°,AD⊥BC于点D,点P是BA延长线上一点,点O是线段AD上一点,OP=OC,下面的结论:①∠APO+∠DCO=30°;②∠APO=∠DCO;③△OPC是等边三角形;④AB=AO+AP.其中正确的是()A.①③④ B.①②③ C.①③ D.①②③④【分析】①利用等边对等角,即可证得:∠APO=∠ABO,∠DCO=∠DBO,则∠APO+∠DCO=∠ABO+∠DBO=∠ABD,据此即可求解;②因为点O是线段AD上一点,所以BO不一定是∠ABD的角平分线,可作判断;③证明∠POC=60°且OP=OC,即可证得△OPC是等边三角形;④首先证明△OPA≌△CPE,则AO=CE,AB=AC=AE+CE=AO+AP.【解析】①如图1,连接OB,∵AB=AC,AD⊥BC,∴BD=CD,∠BAD=∠BAC=×120°=60°,∴OB=OC,∠ABC=90°﹣∠BAD=30°∵OP=OC,∴OB=OC=OP,∴∠APO=∠ABO,∠DCO=∠DBO,∴∠APO+∠DCO=∠ABO+∠DBO=∠ABD=30°;故①正确;②由①知:∠APO=∠ABO,∠DCO=∠DBO,∵点O是线段AD上一点,∴∠ABO与∠DBO不一定相等,则∠APO与∠DCO不一定相等,故②不正确;③∵∠APC+∠DCP+∠PBC=180°,∴∠APC+∠DCP=150°,∵∠APO+∠DCO=30°,∴∠OPC+∠OCP=120°,∴∠POC=180°﹣(∠OPC+∠OCP)=60°,∵OP=OC,∴△OPC是等边三角形;故③正确;④如图2,在AC上截取AE=PA,连接PE,∵∠PAE=180°﹣∠BAC=60°,∴△APE是等边三角形,∴∠PEA=∠APE=60°,PE=PA,∴∠APO+∠OPE=60°,∵∠OPE+∠CPE=∠CPO=60°,∴∠APO=∠CPE,∵OP=CP,在△OPA和△CPE中,,∴△OPA≌△CPE(SAS),∴AO=CE,∴AB=AC=AE+CE=AO+AP;故④正确;本题正确的结论有:①③④故选:A.二.填空题(共10小题)9.(2022•兴化市一模)顶角为80°的等腰三角形的底角为50°.【分析】根据等腰三角形的性质及三角形内角和定理进行解答即可.【解析】∵等腰三角形的顶角为80°,∴这个等腰三角形的底角=(180°﹣80°)=50°.故答案为:50°.10.(2021秋•鼓楼区校级期末)若一个图形是轴对称图形,则这个图形可以是等腰三角形(答案不唯一)(写出一个答案即可).【分析】根据轴对称图形的概念求解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【解析】若一个图形是轴对称图形,则这个图形可以是等腰三角形.故答案为:等腰三角形(答案不唯一).11.(2021秋•淮安区期末)如图,在Rt△ABC中,∠ACB=90°,D是边AB的中点,若AB=6,则CD=3.【分析】在Rt△ABC中,利用斜边上的中线等于斜边的一半,可求出CD的长.【解析】在Rt△ABC中,∠ACB=90°,D是边AB的中点,AB=6,∴CD=AB=×6=3.故答案为:3.12.(2022•如皋市模拟)如图,△ABC中,AB=AC,∠BAC=120°,AD⊥AC交BC于点D,AD=3,则BC=9.【分析】根据三角形内角和定理,等腰三角形的性质得到∠B=∠C=30°,根据直角三角形的性质求出CD,根据等腰三角形的性质求出BD,计算即可.【解析】∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,∵AD⊥AC,∴∠DAC=90°,又∠C=30°,∴CD=2AD=6,∵∠BAC=120°,∠DAC=90°,∴∠BAD=30°,∴∠DAB=∠B,∴BD=AD=3,∴BC=BD+CD=9,故答案为:9.13.(2018秋•灌云县月考)如图,在△ABC中,AB的垂直平分线交AB于E,交BC于D,连接AD.若AC=4cm,△ADC的周长为11cm,则BC的长为7cm.【分析】由AB的垂直平分线交AB于E,交BC于D,根据线段垂直平分线的性质,可得AD=BD,又由△ADC的周长为11cm,即可求得AC+BC=11cm,然后由AC=4cm,即可求得BC的长.【解析】∵AB的垂直平分线交AB于E,交BC于D,∴AD=BD,∵△ADC的周长为11cm,∴AC+CD+AD=AC+CD+BD=AC+BC=11cm,∵AC=4cm,∴BC=7cm.故答案为:7.14.(2020•溧阳市一模)如图,直线l1∥l2∥l3,等边△ABC的顶点B、C分别在直线l2、l3上,若边BC与直线l3的夹角∠1=25°,则边AB与直线l1的夹角∠2=35°.【分析】先根据∠1=25°得出∠3的度数,再由△ABC是等边三角形得出∠4的度数,根据平行线的性质即可得出结论.【解析】∵直线l1∥l2∥l3,∠1=25°,∴∠1=∠3=25°.∵△ABC是等边三角形,∴∠ABC=60°,∴∠4=60°﹣25°=35°,∴∠2=∠4=35°.故答案为:35°.15.(2022•常州二模)如图、在△ABC中,AB=AC,∠BAC=100°,BD平分∠ABC,且BD=AB,连接AD,DC.则∠BDC的度数为130°.【分析】延长AD到点E,使得AE=BC,证得DBC≌△CAE,设∠CDE=∠CED=α,表示出∠BDC=∠ACE=100°+α,然后根据三角形的内角和定理求得已知角即可.【解析】∵AB=AC,∠BAC=100°,∴∠ABC=∠ACB=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=20°,∵BD=AB,∴∠ADB=∠DAB=80°,延长AD到点E,使得AE=BC,∵BD=AB=AC,∠CAD=∠DBC,∴△DBC≌△CAE(SAS),∴CD=CE,∠BDC=∠ACE,∴∠CDE=∠CED=α,∵∠ADB=80°,∴∠BDE=100°,∴∠BDC=∠ACE=100°+α,∴20°+100°+α+α=180°,∴α=30°,∴∠BDC=130°,故答案为:130.16.(2022•邳州市一模)如图,在△ABC中,AB=BC,∠ABC=120°,延长AB到点D,使BD=BC,连接CD,若AC=2,则CD的长为.【分析】由等腰三角形的性质及三角形的内角和定理可求解∠ACB=∠A=30°,再证明△BCD为等边三角形,可求得∠ACD=90°,利用含30°角的直角三角形的性质可得AD=2CD,再利用勾股定理可求解CD的长.【解析】∵AB=BC,∠ABC=120°,∴∠ACB=∠A=30°,∴∠DBC=∠A+∠ACB=60°,∵BD=BC,∴△BCD为等边三角形,∴∠D=∠BCD=60°,∴∠ACD=90°,∴AD=2CD,∵AC2+CD2=AD2,AC=2,∴22+CD2=(2CD)2,解得CD=.故答案为:.17.(2022春•仪征市期中)如图,一张足够长的纸条,AD∥BC,∠MNC=64°.第1次折叠使NC与NM重合,折痕NE1.将纸条展开后再第2次折叠,使NC与NE1重合,折痕NE2,将纸条展开后第3次折叠,使NC与NE2重合,折痕NE3…依此类推,第6次折叠后,∠ME6N=1°.【分析】由折叠的性质折叠n次可得∠EnNnEn+1,然后根据四边形内角和及补角性质可得答案.【解析】由折叠的性质折叠n次可得∠EnNnE=,∴∠ME6N=()°=1°,故答案为:1°.18.(2022•天宁区校级一模)如图,△ABC是等腰直角三角形,AD是其底边BC上的高,点E是AD上的一点,以CE为边向上作等边△CEF,连接BF.则∠CBF的度数为30°.【分析】连接BE并延长交CF于点H,利用等腰三角形的三线合一性质可得AD是BC的垂直平分线,从而可得EB=EC,进而可得∠EBC=∠ECB,然后利用等边三角形的性质可得∠FEC=60°,EF=EC,从而可得EF=EB,进而可得∠FBE=∠EFB,最后利用三角形外角的性质可得∠FEC=2∠FBC,进行计算即可解答.【解析】连接BE并延长交CF于点H,∵△ABC是等腰直角三角形,AD⊥BC,∴AD是BC的垂直平分线,∴EB=EC,∴∠EBC=∠ECB,∵△EFC是等边三角形,∴∠FEC=60°,EF=EC,∴EF=EB,∴∠FBE=∠EFB,∵∠FEH=∠FBE+∠EFB,∠CEH=∠EBC+∠ECB,∴∠FEC=∠FEH+∠CEH=∠FBE+∠EFB+∠EBC+∠ECB=2∠FBE+2∠EBC=2∠FBC,∴∠FBC=∠FEC=30°,故答案为:30°.三.解答题(共9小题)19.(2022•宿豫区校级开学)在图①补充2个小方块,在图②、③、④中分别补充3个小方块,分别使它们成为轴对称图形.【分析】根据轴对称图形的定义解答即可.【解析】作轴对称图形如下(答案不唯一):20.(2021秋•如皋市期末)如图,在边长为1个单位长度的小正方形组成的7×12的网格中,A,B均为格点(网格线的交点).(1)作线段A′B′,使A′B′与线段AB关于直线l对称;(2)连接BB′,仅用无刻度的直尺在BB′上找一点C,使得AC+B′C=BB′.【分析】(1)根据轴对称的性质即可作线段A′B′,使A′B′与线段AB关于直线l对称;(2)根据垂直平分线的性质即可在BB′上找一点C,使得AC+B′C=BB′.【解析】(1)如图,线段A′B′即为所求;(2)如图,点C即为所求.21.(2021秋•射阳县校级期末)已知:如图,在△ABC中,∠ABC、∠ACB的平分线相交于点O,且MN∥BC,分别交AB、AC于点M、N.求证:MN=BM+CN.【分析】由∠ABC、∠ACB的平分线相交于点O,∠MBO=∠OBC,∠OCN=∠OCB,利用两直线平行,内错角相等,利用等量代换可∠MBO=∠MOB,∠NOC=∠OCN,然后根据等角对等边得到BM=MO,ON=CN,再根据角的和差即可证明.【解答】证明:∵∠ABC、∠ACB的平分线相交于点O,∴∠MBO=∠OBC,∠OCN=∠OCB,∵MN∥BC,∴∠OBC=∠MOB,∠NOC=∠OCB,∴∠MBO=∠MOB,∠NOC=∠OCN,∴BM=MO,ON=CN,∴MN=MO+ON=BM+CN.22.(2022春•丹徒区月考)如图,AE平分∠BAD,DE平分∠ADC,AB⊥BC于B,∠1+∠2=90°.求证:DC⊥BC.【分析】根据角平分线的性质和垂直的定义、三角形内角和,可以得到∠DCE的度数,从而可以证明结论成立.【解答】证明:∵AE平分∠BAD,DE平分∠ADC,∴∠1=∠3,∠2=∠4,∵AB⊥BC,∠1+∠2=90°,∴∠ABE=90°,∠AED=90°,∠4+∠1=90°,∴∠3+∠6=90°,∠6+∠5=90°,∴∠3=∠5,∴∠4+∠5=90°,∴∠DCE=180°﹣∠4﹣∠5=90°,∴DC⊥BC.23.(2021秋•淮安区期末)如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于点D,交AB于点E,求∠DBC的度数.【分析】分别求出∠ABC,∠ABD,可得结论.【解析】∵△ABC中,AB=AC,∠A=50°,∴∠ABC=∠C=(180°﹣∠A)=65°,∵AB的垂直平分线MN交AC于D,∴AD=BD,∴∠ABD=∠A=50°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°.24.(2021秋•沛县期中)如图,在等边△ABC中,点D在边BC上,过点D作DE∥AB交AC于点E,过点E作EF⊥DE,交BC的延长线于点F.(1)求∠F的度数;(2)求证:DC=CF.【分析】(1)由平行线的性质求出∠EDC,再由三角形的内角和定理解决问题即可.(2)证△DEC是等边三角形,得CE=CD,再证∠CEF=∠F=30°,得EC=CF,即可得出结论.【解答】(1)解:∵△ABC是等边三角形,∴∠B=60°,∵DE∥AB,∴∠B=∠EDC=60°,∵DE⊥EF,∴∠DEF=90°,∴∠F=90°﹣∠EDF=90°﹣60°=30°;(2)证明:∵△ABC是等边三角形,∴∠B=∠ACB=60°,∵DE∥AB,∴∠B=∠EDC=60°,∴∠EDC=∠ECD=∠DEC=60°,∴△DEC是等边三角形,∴CE=CD,∵∠ECD=∠F+∠CEF,∠F=30°,∴∠CEF=∠F=30°,∴EC=CF,∴CD=CF.25.(2018秋•常熟市期中)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.【分析】(1)设∠BAC=x°,由AD=BD=BC知∠A=∠ABD=x°,∠BDC=∠BCD=2x°,由∠BAC+∠ABC+∠ACB=180°列方程求解可得;(2)依据E是AB的中点,即可得到FE⊥AB,AE=BE,可得FE垂直平分AB,进而得出∠BAF=∠ABF,依据∠ABD=∠BAD,即可得到∠FAD=∠FBD=36°,再根据∠AFC=∠ACB﹣∠CAF=36°,可得∠CAF=∠AFC=36°,进而得到AC=CF.【解析】(1)设∠BAC=x°,∵AD=BD,∴∠A=∠ABD=x°,∴∠BDC=2x°,∵BD=BC,∴∠BDC=∠BCD=2x°,∵AB=AC,∴∠ABC=∠ACB=2x°,由∠BAC+∠ABC+∠ACB=180°可得x+2x+2x=180,解得:x=36,则∠BAC=36°,∠ACB=72°;(2)∵E是AB的中点,AD=BD,∴DE⊥AB,即FE⊥AB;∴AF=BF,∴∠BAF=∠ABF,又∵∠ABD=∠BAD,∴∠FAD=∠FBD=36°,又∵∠ACB=72°,∴∠AFC=∠ACB﹣∠CAF=36°,∴∠CAF=∠AFC=36°,∴AC=CF,即△ACF为等腰三角形.26.(2021秋•泰兴市月考)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BD=CE,BE=CF.(1)求证:△DEF是等腰三角形;(2)猜想:当∠A满足什么条件时,△DEF是等边三角形?并说明理由.【分析】(1)首先根据条件证明△DBE≌△ECF,根据全等三角形的性质可得DE=FE,进而可得到△DEF是等腰三角形;(2)∠A=60°时,△DEF是等边三角形,首先根据△DBE≌△ECF,再证明∠DEF=60°,可以证出结论.【解答】(1)证明:∵AB=AC,∴∠B=∠C,在△DBE和△ECF中,,∴△DBE≌△ECF,∴DE=FE,∴△DEF是等腰三角形;(2)当∠A=60°时,△DEF是等边三角形,理由:∵△BDE≌△CEF,∴∠FEC=∠BDE,∴∠DEF=180°﹣∠BED﹣∠FEC=180°﹣∠DEB﹣∠EDB=∠B要△DEF是等边三角形,只要∠DEF=60°.所以,当∠A=60°时,∠B=∠DEF=60°,则△DEF是等边三角形.27.(2022春•邗江区期末)如
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 借款合同的证据内容
- 解读保险合同时应该注意哪些问题
- 中班数学西瓜船课程设计
- 2023年银川丽人妇产医院招聘考试真题
- 2023年威海市中医院招聘工作人员考试真题
- 2023年普洱市江城县人民医院招聘考试真题
- 巧妙分层设计助力减负增效
- 高中生开展体育拓展训练的策略研究
- 2023年国航股份重庆分公司乘务员招聘考试真题
- 2023年广东肇庆宣卿中学招聘中学教师考试真题
- 生活方式疾病
- 三方委托收款开票合同范本
- 燃气公司财务的管理制度
- 山西省灵丘县山西省刁泉银铜矿业有限公司银、铜矿资源开发利用、地质环境保护与土地复垦方案附件
- 2021年全国普通高等学校体育单招真题英语(含答案解析)
- 物业项目全生命周期个关键节点清单
- 公司装修许可证
- CQI-12涂装系统评审
- 信用管理师(三级)理论考试题库(300题)
- 弯沉值计算表格-你懂得
- 2023全球电动汽车展望(英文)-国际能源署
评论
0/150
提交评论