版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
PAGE19-四川省南充市第一中学2024-2025学年高二数学下学期期中试题理(含解析)总分:150分考试时间:120分钟第Ⅰ卷(选择题)一、单选题:1.若集合,集合,则表示()A. B. C. D.【答案】A【解析】【分析】先求出集合B,进一步得到,再按交集的定义运算即可.【详解】由,得或,所以或,,所以.故选:A【点睛】本题主要考查集合间的基本运算,涉及到交集、补集运算以及解一元二次不等式,是一道简单题.2.复平面内表示复数的点位于().A.第一象限 B.其次象限 C.第三象限 D.第四象限【答案】B【解析】【分析】由乘法法则化复数为代数形式,然后可得其对应点坐标,得所在象限.【详解】,对应点为,在其次象限.故选:B.【点睛】本题考查复数的几何意义,解题关键是驾驭复数的乘法法则.本题属于基础题.3.已知角终边上一点的坐标为,则().A. B. C. D.【答案】D【解析】【分析】利用三角函数的定义求出、,再利用二倍角的正弦公式即可求解.【详解】角终边上一点的坐标为,则,,所以.故选:D【点睛】本题考查了三角函数的定义、二倍角的正弦公式,需熟记公式,属于基础题.4.设为等差数列,公差,,则()A.8 B.10 C.12 D.14【答案】B【解析】【分析】利用等差数列的性质计算即可.【详解】由已知,得,即,解得.故选:B【点睛】本题考查等差数列的定义及性质,考查学生的数学运算实力,是一道简单题.5.设,则“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件【答案】A【解析】【详解】由肯定可得出;但反过来,由不肯定得出,如,故选A.【考点定位】本小题主要考查充分必要条件、不等式的性质等基础学问,娴熟驾驭这两部分的基础学问是解答好本类题目的关键.6.设,则的大小关系是()A. B. C. D.【答案】B【解析】【分析】由函数的单调性及与中间值“1”的大小关系,即可得到本题答案.【详解】由在区间是单调增函数,得,又因为,所以.故选:B.【点睛】本题主要考查指数、对数比较大小的问题,利用函数的单调性及中间值“1”是解决此题的关键.7.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般味道,獐牛同嚼又是一般味道,一共有几般改变,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的味道都不一样,则混合后可以组成的全部不同的味道种数为()A.20 B.24 C.25 D.26【答案】D【解析】【分析】利用组合的意义可得混合后全部不同的味道种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的全部不同的味道种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题留意实际问题的合理转化,本题属于简单题.8.已知实数、满意约束条件,则的最大值为()A. B. C. D.【答案】C【解析】【分析】作出不等式组表示的平面区域,作出目标函数对应的直线,结合图象知当直线过点时,取得最大值.【详解】解:作出约束条件表示的可行域是以为顶点的三角形及其内部,如下图表示:当目标函数经过点时,取得最大值,最大值为.故选:C.【点睛】本题主要考查线性规划等基础学问;考查运算求解实力,数形结合思想,应用意识,属于中档题.9.若过点的直线与曲线有公共点,则直线的斜率的取值范围为()A. B. C. D.【答案】C【解析】设直线方程为,即,直线与曲线有公共点,圆心到直线的距离小于等于半径,得,选择C另外,数形结合画出图形也可以推断C正确.10.函数的部分图象如图所示,为了得到的图象,只需将的图象A.向右平移个单位 B.向右平移个单位C.向左平移个单位 D.向左平移个单位【答案】B【解析】试题分析:由图象知,,,,,得,所以,为了得到的图象,所以只需将的图象向右平移个长度单位即可,故选D.考点:三角函数图象.11.已知中心在原点的椭圆和双曲线有共同的左、右焦点、,两曲线在第一象限的交点为,是以为底边的等腰三角形,若,椭圆和双曲线的离心率分别为、,则的取值范围是()A. B. C. D.【答案】B【解析】【分析】设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,则,利用双曲线的定义和三角形三边关系求得,然后利用【详解】设椭圆的长半轴长为,双曲线的实半轴长为,焦距为,则,由椭圆和双曲线的定义可得,解得,又因为,即,解得,即,所以,故选:B.【点睛】本题主要考查椭圆和双曲线离心率倒数和取值范围的计算,依据题意得出半焦距的取值范围是解题的关键,考查计算实力,属于中等题.12.已知奇函数的定义域为,其导函数为,当时,有成立,则关于x的不等式的解集为()A. B.C. D.【答案】A【解析】【分析】依据题意,设,结合题意求导分析可得函数在上为减函数,结合函数的奇偶性分析可得函数为奇函数,进而将不等式转化为,结合函数的定义域、单调性和奇偶性可得的取值范围,即可得答案.【详解】依据题意,设,其导数为,
又由时,有,则有,
则函数在上为减函数,
又由为定义域为的奇函数,
则,则函数为奇函数,所以函数在上为减函数,
,
所以,
即不等式的解集为.
故选:A.【点睛】本题考查函数的导数与函数单调性的关系,关键是构造新函数,并分析其单调性.第Ⅱ卷(非选择题)二、填空题:13.已知菱形的边长为2,且为60°,则______.【答案】0【解析】分析】利用向量数量积的定义即可求解.【详解】由为菱形,则,所以.故答案为:0【点睛】本题考查了利用向量数量积定义求向量数量积,属于基础题.14.若,则__________.【答案】-32【解析】【分析】通过对原式x赋值1,即可求得答案.【详解】令可得,故答案为-32.【点睛】本题主要考查二项式定理中赋值法的理解,难度不大.15.《九章算术》是我国古代闻名的数学典籍,其中有一道数学问题:“今有勾八步,股十五步.问勾中容圆,径几何?”意思是:在两条直角边分别为八步和十五步的直角三角形中容纳一个圆,请计算该圆直径的最大值为________步.【答案】6【解析】【分析】依据题意画出图形,利用勾股定理求出斜边的长度,设三角形内切圆的半径为步,利用,以及圆的切线性质,可以求出,最终求出圆直径的最大值.【详解】如图所示:,设三角形内切圆的半径为步,,由圆的切线性质可知:过圆切点的半径垂直过该切点的切线,所以有,所以该圆直径的最大值为6步.【点睛】本题考查了三角形内切圆的直径,利用面积不变构造等式是解题的关键.16.如图,在矩形中,,,为线段上一动点,现将沿折起得到,当二面角的平面角为,点在平面上的投影为,当从运动到,则点所形成轨迹的长度为______.【答案】【解析】【分析】依据折叠关系找出与有关的几何关系,得出点的轨迹为圆的一部分,再考虑在运动过程中扫过的弧长即可求解.【详解】在折叠后的图中,作垂足为,连接,依据三垂线定理,,所以就是二面角的平面角为,,依据折叠关系,与全等,对应边上的高位置相同,即在线段上,且是线段的中点,取的中点,连接,则,所以点的轨迹为以为直径的圆的一部分,当从运动到,点在圆周上从点运动到,这段弧所对圆心角为,这段弧长为.故答案为:【点睛】此题考查折叠问题与二面角和投影的轨迹问题,关键在于通过几何关系进行转化得出动点的轨迹.三、解答题:解答应写出文字说明、证明过程或演算步骤.第第17-21题为必做题,每个试题考生都必需作答.第第22、23题为选做题,考生依据要求作答.(一)必考题:17.已知函数.(1)求函数的图象在点处的切线方程;(2)求函数的极值.【答案】(1);(2)极大值为;微小值为.【解析】【分析】(1)求出导函数,得斜率,由斜截式写出直线方程;(2)求出的解,列表表示的正负,的单调性,得极值.【详解】(1),,从而,,因此,函数点处的切线方程为:.(2)令得或则当改变时,与的改变状况如下表300递增递减递增∴函数的单调递增区间是,,函数的单调递减区间是;当时,取得极大值,极大值为;当时,取得微小值,微小值为.【点睛】本题考查导数的几何意义,考查用导数求函数极值,驾驭导数的几何意义和极值的定义是解题关键,本题属于基础题.18.某学校高三年级有400名学生参与某项体育测试,依据男女学生人数比例,运用分层抽样的方法从中抽取了100名学生,记录他们的分数,将数据分成7组:,整理得到如下频率分布直方图:(1)若该样本中男生有55人,试估计该学校高三年级女生总人数;(2)若规定小于60分为“不及格”,从该学校高三年级学生中随机抽取一人,估计该学生不及格的概率;(3)若规定分数在为“良好”,为“优秀”.用频率估计概率,从该校高三年级随机抽取三人,记该项测试分数为“良好”或“优秀”的人数为X,求X的分布列和数学期望.【答案】(1)人(2)(3)详见解析【解析】【分析】(1)依据样本总人数100人,中男生有55人,则可算出女生45人.再依据总人数是400人,按样本中的女生人数与样本总人数的比例即可估算出的估计总体中女生人数.(2)由表可用减去及格人数的概率得到不及格人数的概率.(3)设“样本中“良好”或“优秀””为事务B,则,依据二项分布列出频率分布列,计算数学期望【详解】解:(1)∵样本中男生有55人,则女生45人∴估计总体中女生人数人(2)设“不及格”为事务A,则“及格”为事务∴(3)设“样本中“良好”或“优秀””为事务B,则依题意可知:,所以,X的分布列为X0123P0.3430.4410.1890027【点睛】本题考查频率分布直方图的概率问题,概率分布问题留意一些常用的概率分布,如二项分布,超几何分布等,会计算概率,正确列出分布列,正确计算数学期望及方差.19.在如图所示的几何体中,四边形是正方形,四边形是梯形,,平面,且.(1)求证:平面;(2)求钝二面角的大小.【答案】(1)证明见解析;(2)150°.【解析】【分析】(1)以,,的方向为轴,轴,轴的正向建立如图空间直角坐标系,写出各点坐标,由与平面的法向量垂直(数量积为0)可得线面平行;(2)求出平面和平面的法向量,由法向量夹角得二面角.【详解】(1)证明:由题意得,以点为原点,分别以,,的方向为轴,轴,轴的正向建立如图空间直角坐标系,则,,,,,,依题意易得是平面的一个法向量,又,∴,∴,又∵直线平面,∴平面;(2)∵,,,设为平面的一个法向量,则,即,令可得,设为平面的一个法向量,则,即,令可得,∴,,又二面角为钝二面角.∴二面角的大小为150°.【点睛】本题考查用空间向量法证明线面平行,用向量法求二面角,解题关键是建立空间直角坐标系,求出平面法向量,直线的方向向量.20.已知椭圆:的离心率为,短半轴长为.(1)求椭圆的方程;(2)过作直线与交于,两点,求三角形面积的最大值(是坐标原点).【答案】(1);(2).【解析】分析】(1)依据已知列出的方程组,解得得标准方程;(2)设,,设直线方程为,代入椭圆方程后应用韦达定理得,留意得的取值范围,由弦长公式计算弦长,求出到直线的距离,然后计算出三角形面积,可换元后应用基本不等式得到最大值.【详解】(1)据题意,得,解得,,所以椭圆的标准方程为.(2)设,,明显直线斜率存在,设其方程为,代入,整理得,则,即,,,,到的距离,所以三角形面积,设,所以,当且仅当,即,即,即时取等号,所以面积的最大值为.【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交中的三角形面积最值问题.解题方法是“设而不求”的思想方法,即设交点,,设直线方程为,代入椭圆方程后应用韦达定理得,用表示出三角形面积,从而把面积表示为参数的函数,利用函数的性质或基本不等式求得最值.21.已知函数.(1)求函数的定义域;(2)证明:函数在区间上单调递减;(3)证明:.【答案】(1);(2)证明见解析;(3)证明见解析.【解析】【分析】(1)求出访解析式有意义的自变量的取值范围即可;(2)求出导函数,令,对再求导,确定在上的单调性,从而确定在上的正负,证明的单调性;(3)利用(2)的单调性得当时,,即,这样有不等关系:当时,,则,即,应用累加法可证得结论.【详解】(1)由题意得:,解得或,的定义域为.(2),令,则,时,.即在上单调递减.由于,则在上.因为,所以上,即函数在区间上单调递减.(3)由(2)可知,当时,,即,当时,,则,即,所以整理得:,即,,不等式得证.【点睛】本题考查用导数探讨函数的单调性,用导数证明不等式,解题关键是确定如何利用函数的单调性证明不等式,本题是利用函数的单调性进行放缩,结合数列的特征,用累加法证明出结论.(二)选考题:请在第22、23题中任选一题作答.假如多做,则按所做的第一分题记分.22.已知的内角所对的边分别为,若.(1)求角.(2)若,,求的面积.【答案】(1);(2)【解析】分析】(1)依据正弦定理,可得,再依据三角形的性质,可知,进而求出结果;(2)依据余弦定理,可得,求出,进而求出三角形的面积.【详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 沈从文《街》课件
- 银龙溪两岸护坡及堤顶道路工程施工组织设计方案
- 年产2000台玉米收获机技术改造项目可行性研究报告
- 法律保护我们的人格尊严课件
- 2015年重庆市B卷中考满分作文《我们携手走进友谊》
- 《条件随机场CRF》课件
- 《成长的烦恼》作文讲评课件
- 展览中心铝塑板安装施工协议
- 科技论文写作讲座课件
- 城市安全建设项目立项指南
- 大庆2024年黑龙江大庆市龙凤区人才引进80人笔试历年典型考题及考点附答案解析
- 烟酒行转让合同范本
- 案例2-5 节能效果对比讲解
- 2024年高考数学模拟试卷附答案解析
- 荆楚民艺智慧树知到期末考试答案章节答案2024年湖北第二师范学院
- 穿脱隔离衣的流程及注意事项
- 外国文学智慧树知到期末考试答案章节答案2024年九江职业大学
- 拼多多营销总结报告
- 电子信息类专业《计算机网络》课程教学的改革与实践
- 钢板加固梁施工方案
- 宴会设计与服务 课件 项目一、了解宴会文化
评论
0/150
提交评论