版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届安徽省皖北协作区高一上数学期末教学质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若,,,则有A. B.C. D.2.两圆和的位置关系是A.内切 B.外离C.外切 D.相交3.已知集合,,若,则的值为A.4 B.7C.9 D.104.若,则()A. B.-3C. D.35.若则函数的图象必不经过()A.第一象限 B.第二象限C.第三象限 D.第四象限6.直线与圆x2+y2=1在第一象限内有两个不同的交点,则的取值范围是()A. B.C. D.7.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.8.“xR,exx10”的否定是()A.xR,exx10 B.xR,exx10C.xR,exx10 D.xR,exx109.已知,,则()A. B.C. D.10.下列说法中正确的是()A.存在只有4个面的棱柱 B.棱柱的侧面都是四边形C.正三棱锥的所有棱长都相等 D.所有几何体的表面都能展开成平面图形二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,则的最小值为____________.12.若弧度数为2的圆心角所对的弦长为2,则这个圆心角所夹扇形的面积是___________13.已知是半径为,圆角为扇形,是扇形弧上的动点,是扇形的接矩形,则的最大值为________.14.已知f(x)是定义在R上的奇函数且以6为周期,若f(2)=0,则f(x)在区间(0,10)内至少有________零点.15.定义在上的函数满足则________.16.若,记,,,则P、Q、R的大小关系为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数(,且)(1)若函数的图象过点,求b的值;(2)若函数在区间上的最大值比最小值大,求a的值18.要建造一段5000m的高速公路,工程队需要把600人分成两组,一组完成一段2000m的软土地带公路的建造任务,同时另一组完成剩下的3000m的硬土地带公路的建造任务.据测算,软、硬土地每米公路的工程量分别是50人/天和30人/天,设在软土地带工作的人数x人,在软土、硬土地带筑路的时间分别记为,(1)求,;(2)求全队的筑路工期;(3)如何安排两组人数,才能使全队筑路工期最短?19.已知能表示成一个奇函数和一个偶函数的和.(1)请分别求出与的解析式;(2)记,请判断函数的奇偶性和单调性,并分别说明理由.(3)若存在,使得不等式能成立,请求出实数的取值范围.20.已知,.(1)求;(2)若,,求,并计算.21.已知,函数.(1)若有两个零点,且的最小值为,当时,判断函数在上的单调性,并说明理由;(2)设,记为集合中元素的最大者与最小者之差.若对,恒成立,求实数a的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】根据指数函数和对数函数的单调性分别将与作比较,从而得到结果.【详解】本题正确选项:【点睛】本题考查根据指数函数、对数函数单调性比较大小的问题,常用方法是采用临界值的方式,通过与临界值的大小关系得到所求的大小关系.2、D【解析】根据两圆方程求解出圆心和半径,从而得到圆心距;根据得到两圆相交.【详解】由题意可得两圆方程为:和则两圆圆心分别为:和;半径分别为:和则圆心距:则两圆相交本题正确选项:【点睛】本题考查圆与圆的位置关系,关键是判断出圆心距和两圆半径之间的关系,属于基础题.3、A【解析】可知,或,所以.故选A考点:交集的应用4、B【解析】利用同角三角函数关系式中的商关系进行求解即可.【详解】由,故选:B5、B【解析】令,则的图像如图所示,不经过第二象限,故选B.考点:1、指数函数图像;2、特例法解题.6、D【解析】如图所示:当直线过(1,0)时,将(1,0)代入直线方程得:m=;当直线与圆相切时,圆心到切线的距离d=r,即,解得:m=舍去负值.则直线与圆在第一象限内有两个不同的交点时,m的范围为.故选D7、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法8、B【解析】由全称命题的否定即可得解.【详解】因为命题“xR,exx10”为全称命题,所以该命题的否定为:xR,exx10.故选:B.9、D【解析】由同角三角函数的平方关系计算即可得出结果.【详解】因为,,,,所以.故选:D10、B【解析】对于A、B:由棱柱的定义直接判断;对于C:由正三棱锥的侧棱长和底面边长不一定相等,即可判断;对于D:由球的表面不能展开成平面图形即可判断【详解】对于A:棱柱最少有5个面,则A错误;对于B:棱柱的所有侧面都是平行四边形,则B正确;对于C:正三棱锥的侧棱长和底面边长不一定相等,则C错误;对于D:球的表面不能展开成平面图形,则D错误故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:12、【解析】根据所给弦长,圆心角求出所在圆的半径,利用扇形面积公式求解.【详解】由弦长为2,圆心角为2可知扇形所在圆的半径,故,故答案为:13、【解析】设,用表示出的长度,进而用三角函数表示出,结合辅助角公式即可求得最大值.【详解】设扇形的半径为,是扇形的接矩形则,所以则所以因为,所以所以当时,取得最大值故答案为:【点睛】本题考查了三角函数的应用,将边长转化为三角函数式,结合辅助角公式求得最值是常用方法,属于中档题.14、6【解析】直接利用f(x)的奇偶性和周期性求解.【详解】因为f(x)是定义在R上奇函数且以6为周期,所以f(x)=-f即f-x所以f(x)的图象关于3,0对称,且f3则f9又f(0)=0,f(6)=0,又f(2)=0,所以f(8)=0,f(-2)=0,f(4)=0,所以f(x)在区间(0,10)内至少有6个零点.故答案为:6个零点15、【解析】表示周期为3的函数,故,故可以得出结果【详解】解:表示周期为3的函数,【点睛】本题考查了函数的周期性,解题的关键是要能根据函数周期性的定义得出函数的周期,从而进行解题16、【解析】利用平方差公式和同角三角函数的平方关系可得P、R的关系,然后作差,因式分解,结合已知可判断P、Q的大小关系.【详解】又因为,所以所以,即所以P、Q、R的大小关系为.故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)1(2)或【解析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.【小问1详解】,解得.【小问2详解】当时,在区间上单调递减,此时,,所以,解得:或0(舍去);当时,在区间上单调递增,此时,,所以,解得:或0(舍去).综上:或18、(1),,,(2),且(3)安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短【解析】(1)由题意分别计算在软土、硬土地带筑路的时间即可;(2)由得到零点,即可得到分段函数;(3)利用函数的单调性即可得到结果.【小问1详解】在软土地带筑路时间为:,在硬土地带筑路时间为,,【小问2详解】全队的筑路工期为由于,即,得从而,即,且.【小问3详解】函数区间上递减,在区间上递增,所以是函数的最小值点但不是整数,于是计算和,其中较小者即为所求于是安排316人到软土地带工作,284人到硬土地带工作时,可以使全队筑路工期最短19、(1);(2)见解析;(3).【解析】(1)由函数方程组可求与的解析式.(2)利用奇函数的定义和函数单调性定义可证明为奇函数且为上的增函数.(3)根据(2)中的结果可以得到在上有解,参变分离后利用换元法可求的取值范围.【详解】(1)由已知可得,则,由为奇函数和为偶函数,上式可化为,联合,解得.(2)由(1)得定义域,①由,可知为上的奇函数.②由,设,则,因为,故,,故即,故在上单调递增(3)由为上的奇函数,则等价于,又由在上单调递增,则上式等价于,即,记,令,可得,易得当时,即时,由题意知,,故所求实数的取值范围是.【点睛】本题考查与指数函数有关的复合函数的单调性和奇偶性以及函数不等式有解,前者根据定义进行判断,后者利用单调性和奇偶性可转化为常见不等式有解,本题综合性较高.20、(1)(2),【解析】(1)利用同角三角函数的关系可得.(2)将写成,再用两角差的余弦求解;由可求,先化简再代入求解.【小问1详解】,且,解得,,所以.【小问2详解】因,,所以,所以,所以.因为,,所以,,所以.21、(1)函数在区间上是单调递减,理由见解析(2)【解析】(1)运用单调性的定义去判断或者根据函数本身的性质去判断即可;(2)区间与二次函数的对称轴比较,从而的情况中分类讨论,而后得到的解析式,通过函数解析式求出最小值,再解不等式即可.【小问1详解】方法1:因为,由题意得,即,所以时,即,所以,,对
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二四年报刊亭建设设计合同
- 二零二四年技术咨询服务合同的实施与监督
- 电脑购销合同电子版
- 二零二四年度汽车租赁服务劳务分包合同
- 常年品牌战略咨询服务合同(04版)
- 二零二四年度软件开发合同技术要求及开发进度安排
- 2024年度充电桩技术研发与安装服务合同2篇
- 二零二四年陶瓷制品代理销售期限合同
- 二零二四年度体育赛事组织与推广协议
- 二零二四年度北京物联网技术应用服务合同
- 沪教版三年级上册用一位数除除法竖式计算题练习100道及答案
- 2024-2030年中国注塑磁铁行业市场发展趋势与前景展望战略分析报告
- 工厂品质考试试题及答案
- 2024中智集团招聘重要岗位(高频重点提升专题训练)共500题附带答案详解
- 知道智慧网课《科技伦理》章节测试答案
- 2023年印刷油墨行业分析报告及未来五至十年行业发展报告
- 智力残疾送教上门教案
- 租赁合同英文版
- 《民航概论》 课件 第一章 民航运输业概述
- 痛风临床诊疗规范
- 2023年海南省中考数学试卷(含解析)
评论
0/150
提交评论