版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古自治区2025届高一数学第一学期期末检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知第二象限角的终边上有异于原点的两点,,且,若,则的最小值为()A. B.3C. D.42.若角600°的终边上有一点(-4,a),则a的值是A. B.C. D.3.已知点在第二象限,则角的终边在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.已知集合,集合,则()A.{-1,0,1} B.{1,2}C.{-1,0,1,2} D.{0,1,2}5.已知,其中a,b为常数,若,则()A. B.C.10 D.26.已知函数,则等于A.2 B.4C.1 D.7.设a,bR,,则()A. B.C. D.8.已知函数fx=2A.-2 B.-1C.-129.函数的定义域是()A.(-1,1) B.C.(0,1) D.10.若是定义在(-∞,+∞)上的偶函数,∈[0,+∞)且(),则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的值域为___________.12.已知点是角终边上任一点,则__________13.已知集合,则______14.在正三角形中,是上的点,,则________15.设是以2为周期的奇函数,且,若,则的值等于___16.已知角的终边过点,则___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数是定义在上的奇函数,且.(1)确定函数的解析式,判断并证明函数在上的单调性;(2)若存在实数,使得不等式成立,求正实数的取值范围.18.已知,、、在同一个平面直角坐标系中的坐标分别为、、(1)若,求角的值;(2)当时,求的值19.已知点,,,.(1)若,求的值;(2)若,求的值.20.(1)已知,,求的值.(2)证明:.21.在①;②.请在上述两个条件中任选一个,补充在下面题目中,然后解答补充完整的问题.在中,角所对的边分别为,__________.(1)求角;(2)求的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】根据,得到,从而得到,进而得到,再利用“1”的代换以及基本不等式求解.【详解】解:因为,所以,又第二象限角的终边上有异于原点的两点,,所以,则,因为,所以,所以,当且仅当,即时,等号成立,故选:B2、C【解析】∵角的终边上有一点,根据三角函数的定义可得,即,故选C.3、C【解析】利用任意角的三角函数的定义,三角函数在各个象限中的负号,求得角α所在的象限【详解】解:∵点P(sinα,tanα)在第二象限,∴sinα<0,tanα>0,若角α顶点为坐标原点,始边为x轴的非负半轴,则α的终边落在第三象限,故选:C4、B【解析】由交集定义求得结果.【详解】由交集定义知故选:B5、A【解析】计算出,结合可求得的值.【详解】因为,所以,若,则.故选:A6、A【解析】由题设有,所以,选A7、D【解析】利用不等式的基本性质及作差法,对结论逐一分析,选出正确结论即可.【详解】因为,则,所以,即,故A错误;因为,所以,则,所以,即,∴,,即,故B错误;∵由,因,所以,又因为,所以,即,故C错误;由可得,,故D正确.故选:D.8、A【解析】直接代入-1计算即可.【详解】f故选:A.9、B【解析】根据函数的特征,建立不等式求解即可.【详解】要使有意义,则,所以函数的定义域是.故选:B10、B【解析】,有当时函数为减函数是定义在上的偶函数即故选二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由函数定义域求出的取值范围,再由的单调性即可得解.【详解】函数的定义域为R,而,当且仅当x=0时取“=”,又在R上单调递减,于是有,所以函数的值域为.故答案为:12、##【解析】将所求式子,利用二倍角公式和平方关系化为,然后由商数关系弦化切,结合三角函数的定义即可求解.【详解】解:因为点是角终边上任一点,所以,所以,故答案为:.13、【解析】∵∴,故答案为14、【解析】根据正三角形的性质以及向量的数量积的定义式,结合向量的特点,可以确定,故答案为考点:平面向量基本定理,向量的数量积,正三角形的性质15、【解析】先利用求得的值,再依据题给条件用来表示,即可求得的值【详解】∵,∴,又∵是以2为周期的奇函数,∴故答案为:16、【解析】根据角终边所过的点,求得三角函数,即可求解.【详解】因为角的终边过点则所以故答案为:【点睛】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),函数在上单调递减,证明见解析.(2)【解析】(1)根据,得到函数解析式,设,计算,证明函数的单调性.(2)根据函数的奇偶性和单调性得到,设,求函数的最小值得到答案.【小问1详解】函数是定义在上的奇函数,则,,解得,,故.在上单调递减,证明如下:设,则,,,,故,即.故函数在上单调递减.【小问2详解】,即,,,故,即,设,,,,故,又,故.18、(1)(2)-【解析】⑴首先可以通过、、写出和,然后通过化简可得,最后通过即可得出角的值;⑵首先可通过化简得到,再通过化简得到,最后对化简即可得到的值【详解】⑴已知、、,所以,,因为,所以化简得,即,因为,所以;⑵由可得,化简得,,所以,所以,综上所述,【点睛】本题考查了三角函数以及向量的相关性质,主要考查了三角恒等变换的相关性质以及向量的运算的相关性质,考查了计算能力,考查了化归与转化思想,锻炼了学生对于公式的使用,是难题19、(1)(2)【解析】(1)利用列方程,化简求得.(2)利用列方程,结合同角三角函数的基本关系式、二倍角公式、两角差的余弦公式求得正确答案.【小问1详解】,,,,由于,所以.【小问2详解】若,则,,当时,上式不符合,所以,,所以,由两边平方并化简得,,所以,所以,.20、(1);(2)证明见解析.【解析】(1)对已知式子分别平方相加即可求得.(2)分别求解左边和右边,即可证明.【详解】(1)由,,分别平方得:,。两式相加可得:,整理化简得:.(2)证明:左边.右边,所以左边=右边,即原不等式成立.21、(1)条件选择见解析,(2)【解析】(1)若选①,由正弦定理得,即可求出;若选②,由正弦定理得,即可求出.(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 建筑工程咨询合同协议书
- 商务楼办公室租赁合同
- 学校给水系统升级改造合同
- 2025工程合同格式
- 幼儿园门卫保安用工劳动合同
- 共同投资基金合同
- 2025运输合同常用版范文
- 2025土地承包合同简单范本
- 校园绿色行动报告
- 校园嘉年华策划报告模板
- 取向硅钢冷轧断带的原因分析
- 设备投资评估分析表-20100205
- 砼路面拆除及恢复施工方案
- ApoE基因分型检测
- 监狱监区年度工作总结
- 石灰窑烘炉及开炉方案
- 复苏囊的使用PPT
- (完整版)工业与民用配电设计手册
- 教学论文】《自制教具应用于初中物理有效教学的研究》课题研究报告【教师职称评定】
- 安全生产工作者个人先进事迹材料(word版本)
- 执业药师注册委托书.doc
评论
0/150
提交评论