版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
ITUPublicationsInternationalTelecommunicationUnion
TelecommunicationStandardizationSector
CrowdsourcingAIand
MachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Disclaimer
ThedesignationsemployedandthepresentationofthematerialinthispublicationdonotimplytheexpressionofanyopinionwhatsoeveronthepartofITUconcerningthelegalstatusofanycountry,territory,cityorareaorofitsauthorities,orconcerningthedelimitationofitsfrontiersorboundaries.
ThementionofspecificcompaniesorcertainmanufacturerproductsdoesnotimplythattheyareendorsedorrecommendedbyITUinpreferencetoothersofasimilarnaturethatarenotmentioned.Errorsandomissionsexcepted,thenamesofproprietaryproductsaredistinguishedbyinitialcapitalletters.
AllreasonableprecautionshavebeentakenbyITUtoverifytheinformationcontainedinthispublication.However,thepublishedmaterialisbeingdistributedwithoutwarrantyofanykind,eitherexpressedorimplied.Theresponsibilityfortheinterpretationanduseofthemateriallieswiththereader.
Theopinions,findingsandconclusionsexpressedinthispublicationdonotnecessarilyreflecttheviewsofITUoritsmembership.
ISBN
978-92-61-39451-6(Electronicversion)978-92-61-39461-5(EPUBversion)
978-92-61-39471-4(Mobiversion)
Pleaseconsidertheenvironmentbeforeprintingthisreport.
©ITU2024
Somerightsreserved.ThisworkislicensedtothepublicthroughaCreativeCommonsAttribution-Non-Commercial-ShareAlike3.0IGOlicense(CCBY-NC-SA3.0IGO).
Underthetermsofthislicence,youmaycopy,redistributeandadapttheworkfornon-commercialpurposes,providedtheworkisappropriatelycited.Inanyuseofthiswork,thereshouldbenosuggestionthatITUendorseanyspecificorganization,productsorservices.TheunauthorizeduseoftheITUnamesorlogosisnotpermitted.Ifyouadaptthework,thenyoumustlicenseyourworkunderthesameorequivalentCreativeCommonslicence.Ifyoucreateatranslationofthiswork,youshouldaddthefollowingdisclaimeralongwiththesuggestedcitation:“ThistranslationwasnotcreatedbytheInternationalTelecommunicationUnion(ITU).ITUisnotresponsibleforthecontentoraccuracyofthistranslation.TheoriginalEnglisheditionshallbethebindingandauthenticedition”.Formoreinformation,pleasevisit
/
licenses/by-nc-sa/3.0/igo/
CrowdsourcingAIandMachineLearningsolutionsforSDGs
ITUAI/MLChallenges2024Report
ITU
Foreword
i
TheITUArtificialIntelligenceandMachineLearning(AI/ML)ChallengesarecompetitionswhereanyonecanparticipatetosolveproblemstatementstoadvancetheachievementofSustainableDevelopmentGoals(SDGs)usingAI/ML.Thecompetitionsenableparticipantstoconnectwithnewpartners–andnewtoolsanddataresources–toachievegoalssetoutbyproblemstatementscontributedbyindustryandacademia.
Iampleasedtosaythatthesecompetitionshavewelcomedover8,000participantssincetheirlaunchin2020.
ThecompetitionsstimulateglobalaccesstoAI/MLexpertiseandcapabilitiesandempowerparticipantstocreate,train,and
deployMLmodelsbyofferingcuratedproblemstatements,data,technicalwebinars,mentoring,andhands-ontrainingsessions.Thisenhancesparticipants'skillsandglobalrecognitionandalsosupportsamoreinclusiveITUstandardizationprocessbypavingthewayforparticipantstomakevaluablecontributionstoITU'sspecifications.
Morethan70percentoftheparticipantsin2023werestudents,withalargemajorityfromtheAfricanregion.
Tosharetheoutcomeswiththelargercommunity,solutionssubmittedaresharedasopensourceinseveralrepositoriesontheChallengeGitHub:
/ITU-AI-ML-in-5G
-Challenge
.
Thisreporthighlightstheimportantworkofteamsacrosstheglobe.ItfeatureswinningsolutionsthataretheresultofinnovativeapproachestosolvingproblemswithapplicationsofAIacrossseveraldomains.
SeizoOnoe
DirectorITUTelecommunicationStandardizationBureau
i
Tableofcontents
Foreword
ii
Acronyms
vi
1ExecutiveSummary
1
2Introduction
3
3DomainsandAreasofCompetition
5
3.1AI/MLin5Gand6G(CommunicationNetworks)
5
3.2GeospatialArtificialIntelligence
6
3.3tinyML
6
3.4AIforClimateAction
7
3.5FusionEnergy
7
4Participation
8
4.1MotivationtoParticipate
8
4.2Statistics
9
4.3ChallengePhases/Timeline
11
5Problemstatements
13
6Winningsolutions
15
6.1AI/MLfor5G-EnergyConsumptionModelling
15
6.2Build-a-thon
16
6.3GraphNeuralNetworks(GNN)
16
6.4SmartWeatherStation
17
7Incentives
18
7.1Prizes
18
7.2Certificates
18
8Webinars
20
9Capacitybuilding
21
9.1TechnicalWebinars
21
9.2Hands-OnWorkshops
21
9.3MentoringSessions
21
9.4Round-TableDiscussions
21
iii
9.5OnlineLearningResources
22
9.6CertificationandRecognition
22
10Intellectualpropertyrights
23
11ChallengeSolutionContributions
24
11.1Standards
24
11.2OpenSource
24
11.3JournalandConferencePublications
24
11.4Ecosystemcreation
26
12Judgingthesubmissions
28
12.1Commonoutputformat
28
12.2Additionaloutputforopen-sourcecode
28
12.3Additionaloutputforproprietarycode
28
12.4EvaluationCriteria
28
13Resources
30
14Benefits
31
14.1Benefitsforpartnersandcollaborators
31
14.2BenefitsforParticipants
31
14.3SpecialBenefitsforCertainSponsorCategories
31
15Impact
32
15.1AdvancingTechnologicalInnovation
32
15.2PromotingGlobalCollaboration
32
15.3EnhancingPracticalSkills
32
15.4ContributingtoStandardsDevelopment
32
15.5AddressingSDGs
32
15.6RecognizingandRewardingExcellence
32
15.7BuildingaThrivingEcosystem
33
15.8ShowcasingandDisseminatingResearch
33
16Testimonials
34
17Conclusion
35
Annex1:Data
36
Annex2:ProblemStatementSample
38
Annex3:DataSharingGuidelines
39
iv
Annex4:HostOnboardingGuidelines
44
Listoffiguresandtables
Figures
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020
-2023
3
Figure2:Distributionofparticipantsforthechallenge
3
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
4
Figure4:Motivationtoparticipateinthechallenge
8
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
9
Figure6:CombinedGrowthoftheChallengebyType
9
Figure7:Participationandtotal#submissionsfor2023invariousdomainsof
theITUAI/MLChallenges
11
Figure8:ParticipantsGenderDistribution
11
Figure9:2023ITUAI/MLChallengeTimeline
12
Figure10:SampleChallengeproblemstatements
13
Figure11:WinnerannouncementofAI/MLfor5G-EnergyConsumption
ModellingchallengeatCOP28inDubai
15
Figure12:2ndGNNetWorkshop
17
Figure13:Aurorasmartweatherstation
17
Figure14:WinnerCertificates
19
Figure15:TheML5Gwebinarseriesin2020
20
Figure16:Thecallforpaperforthespecialissueofthepeer-reviewedITU
JournalforFutureandEvolvingTechnologies
25
Figure17:Ecosystem
26
Figure18:2024ChallengeannouncementinShanghaiduringtheAIfor
GoodInnovateforImpactatWorldAIconference
27
Figure19:TestimonialsfromChallengeorganizersandparticipants
34
Figure20:Guidelines
42
Tables
Table1:CompetitionDetails
10
Table2:ProblemStatementSample
38
Table3:DataClassificationCategories
39
v
Acronyms
ACM
AssociationforComputingMachinery
AI
ArtificialIntelligence
CSV
Comma-separatedValue
FGAN
FocusGroupAutonomousNetworks
GNN
GraphNeuralNetworks
IEEE
InstituteofElectricalandElectronicsEngineers
IPR
IntellectualPropertyRights
ITUJ-FET
InternationalTelecommunicationUnionJournalonFutureandEvolvingTechnologies
ML
MachineLearning
NDA
Non-disclosureAgreement
PoC
ProofofConcept
RRM
RadioResourceManagement
SDG
SustainableDevelopmentGoal
SG
StudyGroup
TSB
TelecommunicationStandardizationBureau
vi
CrowdsourcingAIandMachineLearningsolutionsforSDGs
1ExecutiveSummary
ArtificialIntelligence(AI)isadominanttechnologyandimpactseveryaspectofsociety.AsAIcontinuestoevolve,AI/ML-enabledapplicationsandservicesintegratedwiththefutureofcommunicationnetworkswoulddriveinnovationandrelatedstandards.ITUisattheforefrontofexploringhowbesttoapplyAI/MLthroughvariousinitiativesandprojectstoadvancetheachievementofsustainabledevelopmentgoals(SDGs).ITUAI/MLcompetitions,bringtogetherAI/MLstakeholderstobrainstorm,innovateandsolverelevantproblemsintelecommunicationnetworks,Geospatialchallenges,tinyMLusecases,etc.Buildingonitsstandardscommunity,ITUhasbeenconductingglobalITUAI/MLChallengesmappedtoseveralareasimpactingSDGs.
TheITUAI/MLin5GChallengeaimstosolvereal-worldcommunicationnetworkproblemsusingAIandML,focusingonthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Participantsengageintechnicalwebinars,mentoring,andhands-onsessions,creatinganddeployingMLmodels,andapplyingITUstandards,therebygainingglobalrecognitionfortheirinnovativesolutions.
TheGeoAIChallengeappliesAI/MLtoaddressreal-worldgeospatialproblemsrelatedtotheUNSDGs.Participantsgainpracticalexperiencebytacklingissuessuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse,promotinginnovativesolutionsforsustainabledevelopment,andofferingprizes,recognition,andcertificatestotopperformers.
ThetinyMLChallengeexploresapplyingmachinelearningtotinydevicesandembeddedsystemstobuildcost-effective,low-power,reliable,andeasy-to-install,solutionsbyleveragingtinyMLtechnology.
TheITUAI/MLChallengeofferscarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.TeamsparticipatingintheChallengeenable,create,train,anddeployMLmodelsfordifferentdomains.Thisenablesparticipantstonotonlyshowcasetheirtalent,testtheirconceptsonrealdataandreal-worldproblems,andcompeteforglobalrecognitionincludingprizemoneyandcertificates,butalsoentertheworldofITUstandardsbymappingtheirsolutionstoourspecifications.
TheITUAI/MLChallengehashadprofoundimpactsacrossmultipledimensions.
1
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Standards:ThechallengehasfacilitatedtheintegrationofinnovativeAI/MLsolutionsintoITUspecifications,ensuringnewtechnologiesarestandardizedandwidelyadopted.
Research:Thechallengehasspurredcutting-edgeinvestigationsandpracticalapplications,leadingtonumerouspublicationsinjournalsandconferences.
Communitybuilding:ThechallengehasalsofosteredavibrantcommunityofAI/MLpractitioners,withmembersfromdiversebackgroundsandover100countries,creatingaglobalnetworkofcollaboratorsandinnovators.
Capacitybuilding:Thechallengehasprovidedparticipantswithinvaluableskillsthroughtechnicalwebinars,hands-onworkshops,andmentoringsessions,enhancingtheirabilitytotacklereal-worldproblems.
Overall,theITUAI/MLChallengehassignificantlycontributedtotechnologicaladvancement,globalcollaboration,andthedevelopmentofarobustecosystemthatdrivesprogressinAI/MLandcommunicationnetworks.
2
CrowdsourcingAIandMachineLearningsolutionsforSDGs
2Introduction
TheITUAI/MLChallengewaslaunchedin2020.Thefirsteditionranonthetheme“HowtoapplyITU’sMLarchitecturein5Gnetworks”andappliedtothecommunicationnetworksdomain(ITUAI/MLin5GChallenge).ITUisattheforefrontofleveragingAI/MLtoachieveSDGs.Throughavarietyofactivitiesandprojects,ITUbringstogethermultiplestakeholderstobrainstorm,innovate,andsolverelevantproblemsacrossdifferentdomains.TheITUAI/MLChallengeisoneofthekeyinitiativesaimedatfosteringglobalcollaborationandinnovationintheapplicationofAI/MLtoSDGswithanemphasisoncommunicationnetworks.ThischallengehasbeeninstrumentalinexploringhowAIcanbeappliedto5G,geospatialtechnologies,tinyML,andotherareastodriveprogresstowardstheSDGs.
Figure1:Geographicdistributionofparticipantsbycountry/regionfrom2020-2023
Theboundariesandnamesshown,andthedesignationsusedonthismapdonotimplyofficialendorsementoracceptancebytheUnitedNations/ITU.
Note:participantsfrommorethan100countries/regionsparticipatedintheChallenge.Thetopfourcountriesareasfollows:India,UnitedStates,ChinaandNigeria.
Figure2:Distributionofparticipantsforthechallenge
Note:morethan57%ofparticipantsareprofessionalsandaround38%arestudents.
3
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thechallengeconnectsparticipantsfromover100countries,includingstudents,professionals,industryexperts,andacademia,tosolvereal-worldproblemsusingAI/ML.Thecompetitionsoffercarefullycuratedproblemstatements,amixofreal-worldandsimulateddata,technicalwebinars,mentoring,andhands-onsessions.Participantscreate,train,anddeployMLmodels,enablingthemtoshowcasetheirtalent,testtheirconceptsonrealdata,andcompeteforglobalrecognition,includingprizemoneyandcertificates.ThisinitiativealsoprovidesagatewaytotheworldofITUstandards,asparticipantsmaptheirsolutionstoITUspecifications.
ThedomainscoveredintheITUAI/MLChallengeincludeAI/MLin5Gand6G(orcommunicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskillsandgainhands-onexperienceinaddressingcriticalissues.TheAI/MLin5GChallengefocusesontheapplicationofAI/MLincommunicationnetworks,optimizingthedevelopmentandperformanceof5Gand6Gtechnologies.TheGeoAIChallengeaddressesgeospatialproblemsrelatedtotheUNSDGs.ThetinyMLChallengeexplorestheapplicationofMLintinydevicesandembeddedsystems.TheAIforClimateActionInnovationFactoryaimstodevelopAIsolutionsforcombatingclimatechange,whiletheFusionChallengefocusesonusingMLforpredictivemodelinginfusionenergysystems.Throughthesediversedomains,theITUAI/MLChallengecontinuestodriveinnovationandcollaboration,contributingtotheadvancementofglobalstandardsandthedevelopmentofimpactfulsolutions.
Figure3:VariousdomainscoveredintheITUAI/MLChallenge
The2023ITUAI/MLChallengesawmorethan3300participantsfrom100+countriesinthechallenge.Theseparticipantscontributedover20'000submissionsandreceived56'267CHFinprizemoneyfromITUandsponsors.Detailedstatisticsofthechallengecanbefoundinsection4.2.
4
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3DomainsandAreasofCompetition
Since2020,theITUAI/MLChallengehasevolvedtoincludemultipledomains,eachaddressingspecificareasofinterestandimpact.Thesecompetitionsarerunannually,witheacheditionintroducingnewthemesandexpandingthescopeofthechallenge.ThecompetitionshaveincludedAI/MLin5Gand6G(i.e.communicationnetworks),GeoAI,tinyML,AIforClimateAction,andFusion.Eachdomainoffersuniqueopportunitiesforparticipantstoapplytheirskills,gainhands-onexperience,andcontributetosolvingpressingglobalissues.
3.1AI/MLin5Gand6G(CommunicationNetworks)
Applyingmachinelearningin
communicationnetworks
TheITU
AI/MLin5GChallenge
rallieslike-mindedstudentsandprofessionalsfromaroundtheglobetosolvereal-worldproblemsincommunicationnetworksbyapplyingAIandmachinelearning(ML).TheAI/MLin5GChallenge,launchedasthefirsteditionin2020,hasbecomeacornerstoneoftheITUAI/MLChallenge.ThiscompetitionfocusesonapplyingAI/MLincommunicationnetworks,particularlyinthedevelopmentandoptimizationof5Gandemerging6Gtechnologies.Astelecommunicationnetworksevolvetowards6G,AIisexpectedtobeintegraltothenetwork’sdesign,enablingadvancedfeatureslikeAI-nativeinfrastructure,pervasiveintelligence,andreal-timeresponsiveness.
ITUAI/MLin5GChallengeanalysespracticalproblemsinnetworksusingrealandsimulateddata.Asweaimforenhancedefficiency,reliability,andrichuserexperienceusingAI/MLincommunicationnetworks,ITUcallsfortheapplicationofitspre-standardandstandardconceptsinnetworkmanagement,security,optimization,andbeyondtosolvereal-worldproblems.IntheITUAI/MLin5GChallenge,participantsfromvariousbackgroundscollaboratetosolvereal-worldproblemsusingAI/ML,workingoncuratedproblemstatementswithaccesstoamixofreal-worldandsimulateddata.Thechallengeincludestechnicalwebinars,mentoring,andhands-onsessions,enablingparticipantstocreate,train,anddeployMLmodelsforcommunicationnetworks.ThecompetitionnotonlyshowcasestalentandinnovativesolutionsbutalsoprovidesapathwayforparticipantstoengagewithITUstandardsandgainglobalrecognition.
5
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.2GeospatialArtificialIntelligence
ApplyingMachineLearningtoGeospatialAnalysis
The
GeospatialArtificialIntelligenceChallenge
(GeoAI),nowenteringitsthirdeditionin2024,addressesreal-worldgeospatialproblemsbyapplyingAI/ML.ThiscompetitionaimstosolveissuesrelatedtotheUNSDGsusingreal-worlddata.ParticipantsgainpracticalexperienceinapplyingAI/MLtogeospatialdata,tacklingproblemssuchasenvironmentalmonitoring,urbanplanning,anddisasterresponse.Thechallengepromotesinnovativesolutionsthatcontributetosustainabledevelopment,offeringprizes,recognition,andcertificatestothetopperformers.
3.3tinyML
ApplyingMachineLearningtoEdgeDevices
The
tinyMLChallenge
,organizedincollaborationwithindustrypartners,explorestheapplicationofmachinelearninginthedomainoftinydevicesandembeddedsystems.Thesecondeditionofthischallengein2023focusedondevelopingaNext-GentinyMLSmartWeatherStationthatiscost-effective,low-power,reliable,andeasytoinstallandmaintain.Thisweatherstationwillmeasurevariousweatherconditions,particularlyrainandwind,usingtinyMLtechnology.Additionally,thetinyMLChallengeincludesprojectsonscalableandhigh-performancesolutionsforcropdiseasedetectionandwildlifemonitoring.Thiscompetitionencouragesinnovationinenvironmentalmonitoringandagriculture,leveragingthecapabilitiesoftinyML.
6
CrowdsourcingAIandMachineLearningsolutionsforSDGs
3.4AIforClimateAction
AnacceleratorplatformforAI-poweredclimatechangesolutionsfromstart-ups
Climatechangeisasignificantglobalchallengewithfar-reachingimpacts.The
AIforClimateAction
InnovationFactory
,launchedattheAIforGoodSummitin2024,seekstoadvancetheuseofAIincombatingclimatechange.ThisinitiativebuildsonprevioussuccessesandfocusesondevelopingAIsolutionsthataddressclimate-relatedissues.The2024editionaimstoshowcasethesesolutionsatCOP29,theUnitedNationsClimateChangeConferenceinBaku,Azerbaijan.ThewinnersofthiscompetitionwillberecognizedfortheircontributionstotheGreenDigitalActiontrack,highlightingtheroleofAIinpromotingsustainablepracticesandmitigatingclimatechange.
3.5FusionEnergy
The
FusionChallenge
,partoftheIAEACoordinatedResearchProjectonAIforFusion,exploresthepotentialofMLinpredictivemodelingforfusionenergysystems.Fusionenergy,generatedbycombininglightelementstoformaheavierone,representsapromisingalternativeenergysource.Thischallengeengagesthescientificcommunityindevelopingcross-machinedisruptionpredictionmodelsusingML,utilizingdatafromfusiondevicessuchasAlcatorC-Mod,J-TEXT,andHL-2A.Participantsgainhands-onexperienceinAI/MLapplicationsrelevanttofusionenergyscience,competingforprizes,recognition,andcertificates.Thiscompetitionsupportstheglobalefforttomakefusionacommerciallyviableenergysource.
TheITUAI/MLChallenge,throughitsdiversedomainsandcompetitions,continuestodriveinnova-tionandcollaborationinAI/ML.Byaddressingcriticalissuesacrossvarioussectors,thechallengecontributestotheadvancementofglobalstandardsandthedevelopmentofsolutionsthathaveasignificantimpactonsociety.
7
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4Participation
ParticipationisopentoITUmembersandanyindividualfromanITUMemberState.“Participants”areindividualsorcompaniesthatparticipateintheITUAI/MLin5GChallenge,providingsolutionstoproblemsetsoftheChallenge.
Therearetwocategoriesofparticipants:studentandprofessional.
4.1MotivationtoParticipate
Aftereachiterationofthechallengeiscompleted,participantsareaskedtocompleteasurveypreparedbythechallengesecretariat.Oneofthekeyquestionsinthesurveyfocusesontheparticipants'motivationforjoiningthechallenge.ThefigurebelowillustratesthevariousreasonswhyindividualschoosetoparticipateintheITUAI/MLChallenges.Notably,theprimarymotivationformostparticipantsistheopportunitytoupskillorenhancetheirprofessionaloracademiccapabilities,ratherthanthepursuitofprizes.
Figure4:Motivationtoparticipateinthechallenge
8
CrowdsourcingAIandMachineLearningsolutionsforSDGs
4.2Statistics
ITU’smachinelearningchallengeshaveseenanexponentialincreaseinparticipationsince2020,welcomingover8,000participantsfrommorethan100countries,withdevelopingcountriesparticularlywellrepresented,asthechartbelowdemonstrates.
Figure5:Cumulativegrowthofparticipantsfromthetoptencountriessince2020
Thenumberofparticipantshasincreasedfourtimessince2020reachingaround8000intheyear2023.Seethegraphbelow:
Figure6:CombinedGrowthoftheChallengebyType
9
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Participantsinthechallengehavemademorethan23’000submissionstothechallengebyJuneof2024.ThebelowtablesshowgranularparticipationdetailstosomeproblemstatementsoftheITUAI/MLChallengeproblemstatementsin2023.MostoftheseproblemstatementswerehostedthroughtheZindiplatform.
Table1:CompetitionDetails
10
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure7:Participationandtotal#submissionsfor2023invariousdomainsoftheITUAI/MLChallenges
Thegenderdistributiongraphrevealsthatnearly80%oftheparticipantsaremale,highlightingtheimportanceofencouraginggreaterfemaleparticipation.
Figure8:ParticipantsGenderDistribution
4.3ChallengePhases/Timeline
TheITUAI/MLChallengeisrunthroughouttheyeardependingonproblemstatementsprovidedbypartners.Anexampleofachallengetimelineforthe2023ITUAI/MLin5GChallengeisillustratedbelowtoshowthevariousphasesofthechallenge.
11
CrowdsourcingAIandMachineLearningsolutionsforSDGs
Figure9:2023ITUAI/MLChallengeTimeline
12
CrowdsourcingAIandMachineLearningsolutionsforSDGs
5Problemstatements
ParticipantsoftheITUAI/MLChallengecansolvereal-worldproblems(includingthosewithsocialrelevance).ProblemstatementsarecontributedeitherfromITU’sstandardsandspecifications,orfromhostsofproblemstatementswhoareinstitutionsinterestedinadvancingSDGsorcanbedecidedbytheparticipant(s)themselves.Problemstatementswillfallintoaspecificchallengedomainbasedontheproblemowner(host)interestandresources.
The
AIforGoodGlobalSummit
identifiespracticalapplicationsofAI/MLwiththepotentialtoaccelerateprogresstowardsthe
UnitedNationsSustainableDevelopmentGoals
.Solutionsareinvitedinfieldssuchaseducation,healthcareandwellbeing,socialandeconomicequality,climateaction,naturaldisastermanagement,space,andsmartandsafemobility.SelectedteamswillbeinvitedtoparticipateintheAIforGoodSummit.
Figure10:SampleChallengeproblemstatements
TheITUAI/MLChallengecontinuestohostproblemstatementsfromhostsaroundtheworld.Someofthescheduledproblemstatementsareasfollows:
•GreenTelecom:SmartEnergySupplyScheduling[Smartenergysupplyschedulingforbothcarbonfootprintreductionandnetworkreliabilityguarantee]
•Beam-levelTrafficPrediction
•SpecializingLargeLanguageModelsforTelecomNetworks
•Ground-levelNO2EstimationChallenge
•RadioResourceManagement(RRM)for6Gin-XSubnetworks
TheITUAI/MLChallengeservesasacrucialbridgebetweencurrentinnovationsandfutureresearchandstandards.Byengagingparticipantsinsolvingreal-worldproblemsusingAIandML,thechallengefostersthedevelopmentofpracticalsolutionsthatcaninformfutureresearchdirections.Thesesolutionsoftenleadtonewinsightsanddiscoveries,fuellingfurtherinvestigationsandacademicstudies.
13
CrowdsourcingAIandMachineLearningsol
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽建筑安全员-B证考试题库附答案
- 贵州财经职业学院《材料与施工工艺》2023-2024学年第一学期期末试卷
- 贵阳幼儿师范高等专科学校《管理学概论》2023-2024学年第一学期期末试卷
- 2025年上海市建筑安全员考试题库及答案
- 2025年河南省建筑安全员考试题库附答案
- 贵阳信息科技学院《薪酬与福利》2023-2024学年第一学期期末试卷
- 硅湖职业技术学院《食品试验设计》2023-2024学年第一学期期末试卷
- 贵阳学院《物理污染控制工程》2023-2024学年第一学期期末试卷
- 2025云南省建筑安全员C证考试题库
- 广州新华学院《音乐剧演唱(2)》2023-2024学年第一学期期末试卷
- 农业植保机初级课程考试题库(含答案)
- 2023-2024学年浙江省宁波市慈溪市七年级(上)期末数学试卷
- 工作效率管理培训课件
- 河南省新乡市2023-2024学年八年级上学期1月期末历史试题
- 民事证据规则 培训课件
- 采购组织内部架构图
- 医院感染科护士的手术室感染控制培训
- 大棚项目施工安全措施计划方案
- 高中语文评价体系的构建与实施
- 安徽省合肥市蜀山区2023-2024学年七年级上学期期末生物试卷
- 雷达测距原理与应用研究
评论
0/150
提交评论