版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届吉林省公主岭市数学高二上期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线与直线平行,则()A. B.C. D.2.若,,则有()A. B.C. D.3.在正方体中,AC与BD的交点为M.设则下列向量与相等的向量是()A. B.C. D.4.已知定义在上的函数的导函数为,且恒有,则下列不等式一定成立的是()A. B.C. D.5.已知,则()A. B.C. D.6.如图,函数的图象在P点处的切线方程是,若点的横坐标是5,则()A. B.1C.2 D.07.已知直线l与圆交于A,B两点,点满足,若AB的中点为M,则的最大值为()A. B.C. D.8.点在圆上,点在直线上,则的最小值是()A. B.C. D.9.曲线上存在两点A,B到直线到距离等于到的距离,则()A.12 B.13C.14 D.1510.函数的定义域为,其导函数的图像如图所示,则函数极值点的个数为()A.2 B.3C.4 D.511.三棱柱中,,,,若,则()A. B.C. D.12.已知点是抛物线的焦点,点为抛物线上的任意一点,为平面上点,则的最小值为A.3 B.2C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.数列中,,,设(1)求证:数列是等比数列;(2)求数列的前项和;(3)若,为数列的前项和,求不超过的最大的整数14.已知圆,以点为中点的弦所在的直线的方程是___________15.某厂将从64名员工中用系统抽样的方法抽取4名参加2011年职工劳技大赛,将这64名员工编号为1~64,若已知8号、24号、56号在样本中,那么样本中最后一个员工的号码是__________16.已知点,是椭圆内的两个点,M是椭圆上的动点,则的最大值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在正方体中,E,F分别是,的中点(1)求证:∥平面;(2)求平面与平面EDC所成的二面角的正弦值18.(12分)已知椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3(1)求椭圆E的方程;(2)若A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,,求19.(12分)已知双曲线,直线l与交于P、Q两点(1)若点是双曲线的一个焦点,求的渐近线方程;(2)若点P的坐标为,直线l的斜率等于1,且,求双曲线的离心率20.(12分)已知的三个内角,,的对边分别为,,,且满足.(1)求角的大小;(2)若,,,求的长.21.(12分)设曲线在点(1,0)处的切线方程为.(1)求a,b的值;(2)求证:;(3)当,求a的取值范围.22.(10分)计算:(1)求函数(a,b为正常数)的导数(2)已知点P在曲线上,为曲线在点P处的切线的倾斜角,则的取值范围
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】根据两直线平行可得出关于实数的等式,由此可解得实数的值.【详解】由于直线与直线平行,则,解得.故选:D.2、D【解析】对待比较的代数式进行作差,利用不等式基本性质,即可判断大小.【详解】因为,又,,故,则,即;因为,又,,故,则;综上所述:.故选:D.3、C【解析】根据空间向量的运算法则,推出的向量表示,可得答案.【详解】,故选:C.4、D【解析】构造函数,用导数判断函数单调性,即可求解.【详解】根据题意,令,其中,则,∵,∴,∴在上为单调递减函数,∴,即,,则错误;,即,则错误;,即,则错误;,即,则正确;故选:.5、C【解析】取中间值,化成同底利用单调性比较可得.【详解】,,,故,故选:C6、C【解析】函数的图象在点P处的切线方程是,所以,在P处的导数值为切线的斜率,2,故选C考点:本题主要考查导数的几何意义点评:简单题,切线的斜率等于函数在切点的导函数值7、A【解析】设,,则、,由点在圆上可得,再由向量垂直的坐标表示可得,进而可得M的轨迹为圆,即可求的最大值.【详解】设,中点,则,,又,,则,所以,又,则,而,,所以,即,综上,,整理得,即为M的轨迹方程,所以在圆心为,半径为的圆上,则.故选:A.【点睛】关键点点睛:由点圆位置、中点坐标公式及向量垂直的坐标表示得到关于的轨迹方程.8、B【解析】根据题意可知圆心,又由于线外一点到已知直线的垂线段最短,结合点到直线的距离公式,即可求出结果.【详解】由题意可知,圆心,所以圆心到的距离为,所以的最小值为.故选:B.9、D【解析】由题可知A,B为半圆C与抛物线的交点,利用韦达定理及抛物线的定义即求.【详解】由曲线,可得,即,为圆心为,半径为7半圆,又直线为抛物线的准线,点为抛物线的焦点,依题意可知A,B为半圆C与抛物线的交点,由,得,设,则,,∴.故选:D.10、C【解析】根据给定的导函数的图象,结合函数的极值的定义,即可求解.【详解】如图所示,设导函数的图象与轴的交点分别为,根据函数的极值的定义可知在该点处的左右两侧的导数符号相反,可得为函数的极大值点,为函数的极小值点,所以函数极值点的个数为4个.故选:C.11、A【解析】利用空间向量线性运算及基本定理结合图形即可得出答案.【详解】解:由,,,若,得.故选:A.12、A【解析】作垂直准线于点,根据抛物线的定义,得到,当三点共线时,的值最小,进而可得出结果.【详解】如图,作垂直准线于点,由题意可得,显然,当三点共线时,的值最小;因为,,准线,所以当三点共线时,,所以.故选A【点睛】本题主要考查抛物线上任一点到两定点距离的和的最值问题,熟记抛物线的定义与性质即可,属于常考题型.二、填空题:本题共4小题,每小题5分,共20分。13、(1)证明见解析;(2);(3)2021【解析】(1)将两边都加,证明是常数即可;(2)求出的通项,利用错位相减法求解即可;(3)先求出,再求出的表达式,利用裂项相消法即可得解.【详解】(1)将两边都加,得,而,即有,又,则,,所以数列是首项为,公比为的等比数列;(2)由(1)知,,则,,,因此,,所以;(3)由(2)知,于是得,则,因此,,所以不超过的最大的整数是202114、【解析】设,利用以为中点的弦所在的直线即为经过点且垂直于AC的直线求得直线斜率,由点斜式可求得直线方程【详解】圆的方程可化为,可知圆心为设,则以为中点的弦所在的直线即为经过点且垂直于的直线.又知,所以,所以直线的方程为,即故答案为:【点睛】本题考查圆的几何性质,考查直线方程求解,是基础题15、40【解析】结合系统抽样的抽样方法来确定最后抽取的号码.【详解】因为分段间隔为,故最后一个员工的号码为.故答案为:16、##【解析】结合椭圆的定义求得正确答案.【详解】依题意,椭圆方程为,所以,所以是椭圆的右焦点,设左焦点为,根据椭圆的定义可知,,所以的最大值为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解析】(1)连接,,连接,证明CE∥即可;(2)建立空间直角坐标系,求出平面与平面EDC的法向量,利用向量法求二面角的正弦值.【小问1详解】如图,连接,,连接,∵BC∥且BC=,∴四边形是平行四边形,∴∥且,∵E是中点,G是中点,∴∥CG且,∴四边形是平行四边形,∴∥CE,∵平面,CE平面,∴CE∥平面;【小问2详解】如图建立空间直角坐标系,设正方体的棱长为2,则,则,设平面的法向量为,则,取;设平面EDC的法向量为,则,取,则;设平面与平面EDC所成的二面角的平面角为α,则,∴18、(1);(2)【解析】(1)根据离心率和最大距离建立等式即可求解;(2)根据弦长,求出直线方程,解出点的坐标即可得解.【详解】(1)椭圆的离心率为,右焦点为F,且E上一点P到F的最大距离3,所以,所以,所以椭圆E的方程;(2)A,B为椭圆E上的两点,线段AB过点F,且其垂直平分线交x轴于H点,所以线段AB所在直线斜率一定存在,所以设该直线方程代入,整理得:,设,,,整理得:,当时,线段中点坐标,中垂线方程:,;当时,线段中点坐标,中垂线方程:,,综上所述:.19、(1)(2)或【解析】(1)根据题意可得,又因为且,解得,可得双曲线方程,进而可得的渐近线方程(2)设直线的方程为:,,,联立直线与双曲线方程,可得关于的一元二次方程,由韦达定理可得,,再由两点之间距离公式得,解得,进而由可求出,即可求得离心率.【小问1详解】∵点是双曲线的一个焦点,∴,又∵且,解得,∴双曲线方程为,∴的渐近线方程为:;小问2详解】设直线的方程为,且,,联立,可得,则,∴,即,∴,解得或,即由可得或,故双曲线的离心率或.20、(1);(2).【解析】(1)由正弦定理化边为角后,结合两角和的正弦公式、诱导公式可求得;(2)用表示出,然后平方由数量积的运算求得向量的模(线段长度)【详解】(1)因为,所以由正弦定理可得,即,因为,所以,,∵,故;(2)由,得,所以,所以.21、(1)(2)证明见解析(3)【解析】(1)求导,根据导数的几何意义,令x=1处的切线的斜率等1,结合,即可求得a和b的值;(2)利用(1)的结论,构造函数,求求导数,判断单调性,求出最小值即可证明;(3)根据条件构造函数,求出其导数,分类讨论导数的值的情况,根据单调性,判断函数的最小值情况,即可求得答案.【小问1详解】由题意知:,因为曲线在点(1,0)处的切线方程为,故,即;【小问2详解】证明:由(1)知:,令,则,当时,,单调递减,当时,,单调递增,所以当时,取得极小值,也即最小值,最小值为,故,即成立;【小问3详解】当,即,(),设,(),则,当时,由得,此时,此时在时单调递增,,适合题意;当时,,此时在时单调递增,,适合题意;当时,,此时,此时在时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《供应商档案管理》课件
- 《园林景观分析》课件
- 人教版八年级生物下册第八单元健康地生活第三章第二、三章章末总结教学课件
- 《密尔沃基美术馆》课件
- 单位管理制度汇编大全员工管理篇
- 单位管理制度合并汇编【职工管理篇】
- 单位管理制度分享合集职员管理十篇
- 单位管理制度范文大合集【人力资源管理篇】十篇
- 单位管理制度范例汇编职工管理篇
- 单位管理制度呈现汇编【人事管理篇】
- 人才队伍建设实施方案
- 德钦县云岭乡、佛山乡部分村落生活垃圾处置工程环评报告
- 毒理学基础期末考试试题整理大全附答案
- 瑞幸咖啡案例分析
- 寒假安全教育主题班会PPT-
- 学生资助手册
- (完整版)聚乙烯课件
- 中国雷暴日多发区特征及雷电发展变化
- 20232023山东省高中学业水平测试会考题及答案政治
- 独一味(正式稿2)
- 山西太原晋阳湖总体规划城市设计景观方案文本
评论
0/150
提交评论