浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题含解析_第1页
浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题含解析_第2页
浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题含解析_第3页
浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题含解析_第4页
浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省湖州市9+1高中联盟长兴中学2025届数学高二上期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若函数有两个不同的极值点,则实数的取值范围是()A. B.C. D.2.双曲线C:的右焦点为F,过点F作双曲线C的两条渐近线的垂线,垂足分别为H1,H2.若,则双曲线C的离心率为()A. B.C. D.23.在等差数列中,,,则()A. B.C. D.4.如图,双曲线,是圆的一条直径,若双曲线过,两点,且离心率为,则直线的方程为()A. B.C. D.5.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.6.设椭圆()的左焦点为F,O为坐标原点.过点F且斜率为的直线与C的一个交点为Q(点Q在x轴上方),且,则C的离心率为()A. B.C. D.7.某家大型超市近10天的日客流量(单位:千人次)分别为:2.5、2.8、4.4、3.6.下列图形中不利于描述这些数据的是()A.散点图 B.条形图C.茎叶图 D.扇形图8.若圆上至少有三个点到直线的距离为1,则半径的取值范围是()A. B.C. D.9.抛物线的焦点为,准线为,焦点在准线上的射影为点,过任作一条直线交抛物线于两点,则为()A.锐角 B.直角C.钝角 D.锐角或直角10.已知数列中,,,是的前n项和,则()A. B.C. D.11.已知椭圆:与双曲线:有相同的焦点、,椭圆的离心率为,双曲线的离心率为,点P为椭圆与双曲线的交点,且,则的最大值为()A. B.C. D.12.已知命题:,;命题:,.则下列命题中为真命题的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______14.知函数,若函数有两个不同的零点,则实数的取值范围为_____________.15.曲线在点M(π,0)处的切线方程为________16.已知,满足约束条件则的最小值为__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知展开式中,第三项的系数与第四项的系数相等(1)求n的值;(2)求展开式中有理项的系数之和(用数字作答)18.(12分)已知数列{}的首项=2,(n≥2,),,.(1)证明:{+1}为等比数列;(2)设数列{}的前n项和,求证:.19.(12分)已知椭圆:的四个顶点组成的四边形的面积为,且经过点.(1)求椭圆的方程;(2)若椭圆的下顶点为,如图所示,点为直线上的一个动点,过椭圆的右焦点的直线垂直于,且与交于,两点,与交于点,四边形和的面积分别为,,求的最大值.20.(12分)如图,在四面体ABCD中,,平面ABC,点M为棱AB的中点,,(1)证明:;(2)求平面BCD和平面DCM夹角的余弦值21.(12分)已知数列与满足(1)若,且,求数列的通项公式;(2)设的第k项是数列的最小项,即恒成立.求证:的第k项是数列的最小项;(3)设.若存在最大值M与最小值m,且,试求实数的取值范围22.(10分)如图,在三棱锥中,平面,,,为的中点.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】计算,然后等价于在(0,+∞)由2个不同的实数根,然后计算即可.【详解】的定义域是(0,+∞),,若函数有两个不同的极值点,则在(0,+∞)由2个不同的实数根,故,解得:,故选:D.【点睛】本题考查根据函数极值点个数求参,考查计算能力以及思维转变能力,属基础题.2、D【解析】将条件转化为该双曲线的一条渐近线的倾斜角为,可得,由离心率公式即可得解.【详解】由题意,(为坐标原点),所以该双曲线的一条渐近线的倾斜角为,所以,即,所以离心率.故选:D.3、B【解析】利用等差中项的性质可求得的值,进而可求得的值.【详解】由等差中项的性质可得,则.故选:B.4、D【解析】由离心率求得,设出两点坐标代入双曲线方程相减求得直线斜率与的关系得结论【详解】由题意,则,即,由圆方程知,设,,则,,又,两式相减得,所以,直线方程为,即故选:D5、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.6、D【解析】连接Q和右焦点,可知|OQ|=,可得∠FQ=90°,由得,写出两直线方程,联立可得Q点坐标,Q点坐标代入椭圆标准方程可得a、b、c关系﹒【详解】设椭圆右焦点为,连接Q,∵,,∴|OQ|=,∴∠FQ=90°,∵,∴,FQ过F(-c,0),Q过(c,0),则,由,∵Q在椭圆上,∴,又,解得,∴离心率故选:D7、A【解析】根据数据的特征以及各统计图表的特征分析即可;【详解】解:茎叶图、条形图、扇形图均能将数据描述出来,并且能够体现出数据的变化趋势;散点图表示因变量随自变量而变化的大致趋势,故用来描述该超市近10天的日客流量不是很合适;故选:A8、B【解析】先求出圆心到直线的距离为,由此可知当圆的半径为时,圆上恰有三点到直线的距离为,当圆的半径时,圆上恰有四个点到直线的距离为,故半径的取值范围是,即可求出答案.【详解】由已知条件得的圆心坐标为,圆心到直线为,∵圆上至少有三个点到直线的距离为1,∴圆的半径的取值范围是,即,即半径的取值范围是.故选:.9、D【解析】设出直线方程,联立抛物线方程,利用韦达定理,求得,根据其结果即可判断和选择.【详解】为说明问题,不妨设抛物线方程,则,直线斜率显然不为零,故可设直线方程为,联立,可得,设坐标为,则,故,当时,,;当时,,;故为锐角或直角.故选:D.10、D【解析】由,得到为递增数列,又由,得到,化简,即可求解.【详解】解:由,得,又,所以,所以,即,所以数列为递增数列,所以,得,即,又由是的前项和,则.故选:D.【点睛】关键点睛:本题考查数列求和问题,关键在于由已知条件得出,运用裂项相消求和法.11、B【解析】不妨设点为第一象限的交点,结合椭圆与双曲线的定义得到,进而结合余弦定理得到,即,令然后结合三角函数即可求出结果.【详解】不妨设点为第一象限的交点,则由椭圆的定义可得,由双曲线的定义可得,所以,因此,即,所以,即,令因此,其中,所以当时,有最大值,最大值为,故选:B.【点睛】一、椭圆的离心率是椭圆最重要的几何性质,求椭圆的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=a2-c2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)二、双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出a,c,代入公式;②只需要根据一个条件得到关于a,b,c的齐次式,结合b2=c2-a2转化为a,c的齐次式,然后等式(不等式)两边分别除以a或a2转化为关于e的方程(不等式),解方程(不等式)即可得e(e的取值范围)12、C【解析】利用基本不等式判断命题的真假,由不等式性质判断命题的真假,进而确定它们所构成的复合命题的真假即可.【详解】由,当且仅当时等号成立,故不存在使,所以命题为假命题,而命题为真命题,则为真,为假,故为假,为假,为真,为假.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题14、【解析】根据分段函数的性质,结合幂函数、一次函数的单调性判断零点的分布,进而求m的范围.【详解】由解析式知:在上为增函数且,在上,时为单调函数,时无零点,故要使有两个不同的零点,即两侧各有一个零点,所以在上必递减且,则,可得.故答案为:15、【解析】由题意可得,据此可得切线的斜率,结合切点坐标即可确定切线方程.【详解】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.【点睛】导数运算及切线的理解应注意的问题一是利用公式求导时要特别注意除法公式中分子的符号,防止与乘法公式混淆二是直线与曲线公共点的个数不是切线的本质,直线与曲线只有一个公共点,直线不一定是曲线的切线,同样,直线是曲线的切线,则直线与曲线可能有两个或两个以上的公共点三是复合函数求导的关键是分清函数的结构形式.由外向内逐层求导,其导数为两层导数之积.16、2【解析】由题意,根据约束条件作出可行域图,如图所示,将目标函数转化为,作出其平行直线,并将其在可行域内平行上下移动,当移到顶点时,在轴上的截距最小,即.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)8;(2).【解析】(1)由题设可得,进而写出第三、四项的系数,结合已知列方程求n值即可.(2)由(1)有,确定有理项的对应k值,进而求得对应项的系数,即可得结果.小问1详解】由题意,二项式展开式的通项公式所以第三项系数为,第四项系数为,由,解得,即n的值为8【小问2详解】由(1)知:当,3,6时,对应的是有理项当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;当时,展开式中对应的有理项为;故展开式中有理项的系数之和为18、(1)证明见解析(2)证明见解析【解析】(1)利用已知条件证明为常数即可;(2)求出和通项公式,再求出通项公式,利用裂项相消法可求,判断的单调性即可求其范围.【小问1详解】∵=2,(n≥2,),∴当n≥2时,(常数),∴数列{+1}是公比为3的等比数列;【小问2详解】由(1)知,数列{+1}是以3为首项,以3为公比的等比数列,∴,∴,∴∵,∴∴,∴∴.当n≥2时,∴{}为递增数列,故的最小值为,∴.19、(1)(2)【解析】(1)因为在椭圆上,所以,又因为椭圆四个顶点组成的四边形的面积为,所以,解得,所以椭圆的方程为(2)由(1)可知,设,则当时,,所以,直线的方程为,即,由得,则,,,又,所以,由,得,所以,所以,当,直线,,,,,所以当时,.点睛:在圆锥曲线中研究最值或范围问题时,若题目的条件和结论能体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值.在利用代数法解决最值与范围问题时常从以下方面考虑:①利用判别式来构造不等关系,从而确定参数的取值范围;②利用已知参数的范围,求新参数的范围,解这类问题的关键是在两个参数之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数的取值范围.20、(1)证明见解析(2)【解析】(1)根据题意,利用线面垂直的判定定理证明平面ABD即可;(2)以A为原点,分别以,,方向为x轴,y轴,z轴的正方向的空间直角坐标系,分别求得平面BCD的一个法向量和平面DCM的一个法向量,然后由求解【小问1详解】证明:∵平面ABC,∴,又,,∴平面ABD,∴【小问2详解】如图,以A为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系,则,,,,,依题意,可得,设为平面BCD的一个法向量,则,不妨令,可得设为平面DCM的一个法向量,则,不妨令,可得,所以所以平面BCD和平面DCM的夹角的余弦值为21、(1)(2)证明见解析.(3)【解析】(1)由已知关系得出是等差数列及公差,然后可得通项公式;(2)由已知关系式,利用累加法证明对任意的,恒成立,即可得(3)由累加法求得通项公式,然后确定的奇数项和偶数项的单调性,得出数列的最大项和最小项,再利用已知范围解得的范围【小问1详解】由已知,是等差数列,公差为6,所以;【小问2详解】对任意的,恒成立,而恒成立,若,则,恒成立,同理若,也有恒成立,所以对任意的,恒成立,即是最小项;【小问3详解】时,,所以,也适合此式所以,若,则,,,即,,若,由于,且是正负相间,因此无最大项也无最小项因此有,所以的奇数项数列是递增数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论