上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题含解析_第1页
上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题含解析_第2页
上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题含解析_第3页
上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题含解析_第4页
上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

上海市上海交大附中2025届数学高一上期末教学质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数若函数有四个零点,零点从小到大依次为则的值为()A.2 B.C. D.2.下列选项中,两个函数表示同一个函数的是()A., B.,C., D.,3.函数的图象大致为()A. B.C. D.4.函数(且)的图像必经过点()A. B.C. D.5.已知α为第二象限角,,则cos2α=()A. B.C. D.6.函数的零点所在的区间是A. B.C. D.7.函数是()A.偶函数,在是增函数B.奇函数,在是增函数C.偶函数,在是减函数D.奇函数,在是减函数8.纳皮尔是苏格兰数学家,其主要成果有球面三角中纳皮尔比拟式、纳皮尔圆部法则(1614)和纳皮尔算筹(1617),而最大贡献是对数的发明,著有《奇妙的对数定律说明书》,并且发明了对数尺,可以利用对数尺查询出任意一对数值.现将物体放在空气中冷却,如果物体原来的温度是(℃),空气的温度是(℃),经过t分钟后物体的温度T(℃)可由公式得出,如温度为90℃的物体,放在空气中冷却2.5236分钟后,物体的温度是50℃,若根据对数尺可以查询出,则空气温度是()A.5℃ B.10℃C.15℃ D.20℃9.《掷铁饼者》取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约米,肩宽约为米,“弓”所在圆的半径约为米,你估测一下掷铁饼者双手之间的距离约为(参考数据:,)()A.米 B.米C.米 D.米10.命题p:∀x∈N,x3>x2的否定形式¬p为()A.∀x∈N,x3≤x2 B.∃x∈N,x3>x2C.∃x∈N,x3<x2 D.∃x∈N,x3≤x2二、填空题:本大题共6小题,每小题5分,共30分。11.半径为2cm,圆心角为的扇形面积为.12.已知是第四象限角,,则______13.已知幂函数为奇函数,则___________.14.已知函数,且关于的方程有且仅有一个实数根,那实数的取值范围为________15.已知函数是奇函数,当时,,若,则m的值为______.16.已知函数f(x)=π6x,x三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.设函数()在处取最大值(Ⅰ)求的值;(Ⅱ)在中,分别是角的对边.已知,,,求的值18.已知的部分图象如图.(1)求函数的解析式;(2)求函数在上的单调增区间.19.2021年秋季学期,某省在高一推进新教材,为此该省某市教育部门组织该市全体高中教师在暑假期间进行相关学科培训,培训后举行测试(满分100分),从该市参加测试的数学老师中抽取了100名老师并统计他们的测试分数,将成绩分成五组,第一组[65,70),第二组[70,75),第三组[75,80),第四组[80,85),第五组[85,90],得到如图所示的频率分布直方图(1)求a的值以及这100人中测试成绩在[80,85)的人数;(2)估计全市老师测试成绩的平均数(同组中的每个数据都用该组区间中点值代替)和第50%分数位(保留两位小数);(3)若要从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,并在这6人中再抽取2人担当分享交流活动的主持人,求第四组至少有1名老师被抽到的概率20.在2020年初,新冠肺炎疫情袭击全国,丽水市某村施行“封村”行动.为了更好地服务于村民,村卫生室需建造一间地面面积为30平方米且墙高为3米的长方体供给监测站.供给监测站的背面靠墙,无需建造费用,因此甲工程队给出的报价为:正面新建墙体的报价为每平方米600元,左右两面新建墙体报价为每平方米360元,屋顶和地面以及其他报价共计21600元,设屋子的左右两侧墙的长度均为x米.(1)当左右两面墙的长度为多少时,甲工程队报价最低,最低报价为多少?(2)现有乙工程队也参与此监测站建造竞标,其给出的整体报价为元,若无论左右两面墙的长度为多少米,乙工程队都能竞标成功,试求a的取值范围.21.已知,非空集合,若S是P的子集,求m的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】函数有四个零点,即与图象有4个不同交点,可设四个交点横坐标满足,由图象,结合对数函数的性质,进一步求得,利用对称性得到,从而可得结果.【详解】作出函数的图象如图,函数有四个零点,即与的图象有4个不同交点,不妨设四个交点横坐标满足,则,,,可得,由,得,则,可得,即,,故选C.【点睛】函数的性质问题以及函数零点问题是高考的高频考点,考生需要对初高中阶段学习的十几种初等函数的单调性、奇偶性、周期性以及对称性非常熟悉;另外,函数零点的几种等价形式:函数的零点函数在轴的交点方程的根函数与的交点.2、C【解析】根据函数的定义域,即可判断选项A的两个函数不是同一个函数,根据函数解析式不同,即可判断选项B,D的两函数都不是同一个函数,从而为同一个函数的只能选C【详解】A.的定义域为{x|x≠0},y=1的定义域为R,定义域不同,不是同一个函数;B.和y=|x|的解析式不同,不是同一函数;C.y=x的定义域为R,y=lnex=x的定义域为R,定义域和解析式都相同,是同一个函数;D.=|x-1|,=x-1,解析式不同,不是同一个函数故选C【点睛】本题考查同一函数的定义,判断两函数是否为同一个函数的方法:看定义域和解析式是否都相同3、D【解析】根据函数的奇偶性可排除选项A,B;根据函数在上的单调性可排除选项C,进而可得正确选项.【详解】函数的定义域为且,关于原点对称,因为,所以是偶函数,图象关于轴对称,故排除选项A,B,当时,,由在上单调递增,在上单调递减,可得在上单调递增,排除选项C,故选:D.4、D【解析】根据指数函数的性质,求出其过的定点【详解】解:∵(且),且令得,则函数图象必过点,故选:D5、A【解析】,故选A.6、B【解析】∵,,,,∴函数的零点所在区间是故选B点睛:函数零点问题,常根据零点存在性定理来判断,如果函数在区间上的图象是连续不断的一条曲线,且有,那么,函数在区间内有零点,即存在使得

这个也就是方程的根.由此可判断根所在区间.7、B【解析】利用奇偶性定义判断的奇偶性,根据解析式结合指数函数的单调性判断的单调性即可.【详解】由且定义域为R,故为奇函数,又是增函数,为减函数,∴为增函数故选:B.8、B【解析】依题意可得,即,即可得到方程,解得即可;【详解】:依题意,即,又,所以,即,解得;故选:B9、C【解析】先计算弓所在的扇形的弧长,算出其圆心角后可得双手之间的距离.【详解】弓形所在的扇形如图所示,则的长度为,故扇形的圆心角为,故.故选:C.10、D【解析】根据含有一个量词命题的否定的定义求解.【详解】因为命题p:∀x∈N,x3>x2的是全称量词命题,其否定是存在量词命题,所以¬p:∃x∈N,x3≤x2故选:D【点睛】本题主要考查含有一个量词命题的否定,还考查了理解辨析的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】求出扇形的弧长,利用扇形面积公式求解即可.【详解】因为半径为,圆心角为的扇形,弧长为,所以扇形面积为:故答案为.【点睛】本题考查扇形的面积公式的应用,考查计算能力,属于基础题.12、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.13、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,,因为,所以函数是偶函数,不符合题意;当时,,因为,所以函数是奇函数,符合题意,故答案为:14、【解析】利用数形结合的方法,将方程根的问题转化为函数图象交点的问题,观察图象即可得到结果.【详解】作出的图象,如下图所示:∵关于的方程有且仅有一个实数根,∴函数的图象与有且只有一个交点,由图可知,则实数的取值范围是.故答案为:.15、【解析】由奇函数可得,则可得,解出即可【详解】因为是奇函数,,所以,即,解得故答案为:【点睛】本题考查利用奇偶性求值,考查已知函数值求参数16、12##【解析】利用分段函数的解析式,代入求解.【详解】因为函数f(x)=所以f(f(13))=f故答案为:1三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】(Ⅰ)由题意得,根据在处取最大值得,即,故.(Ⅱ)由(Ⅰ)可得,故,所以,由正弦定理得,所以,故可得试题解析:(Ⅰ),因为在时取最大值,所以,故又,所以(Ⅱ)由(Ⅰ)知因为,所以,又为的内角,所以由正弦定理得,由题意得为锐角,所以.所以18、(1);(2)和.【解析】(1)由图知:且可求,再由,结合已知求,写出解析式即可.(2)由正弦函数的单调性,知上递增,再结合给定区间,讨论值确定其增区间.【详解】(1)由图知:且,∴.又,即,而,∴.综上,.(2)∵,∴.当时,;当时,,又,∴函数在上的单调增区间为和.19、(1);20;(2)分,76.67分(3)【解析】(1)根据频率之和为1,可求得a的值,根据频数的计算可求得测试成绩在[80,85)的人数;(2)根据频率分布直方图可计算中位数,即可求得第50%分数位;(3)列举出所有可能的抽法,再列出第四组至少有1名老师被抽到可能情况,根据古典概型的概率公式求得答案.【小问1详解】由题意得:,解得;这100人中测试成绩在[80,85)的人数为(人);【小问2详解】平均数为:(分),设中位数为m,且,则,解得,故第50%分数位76.67分;【小问3详解】第三组频率为,第四组频率为,第五组频率为,故从第三、四、五组老师中用分层抽样的方法抽取6人作学习心得交流分享,三组人数为3人,2人和1人,记第三组抽取人为,第四组抽取的人为,第五组抽取的人为,则抽取2人的所有情况如下:共15种,其中第四组至少有1名老师被抽到的抽法有共9种,故第四组至少有1名老师被抽到的概率为.20、(1)当左右两面墙的长度为5时,报价最低为43200元;(2).【解析】(1)设甲工程队的总造价为元,推出,利用基本不等式求解最值即可;(2)由题意对任意的,恒成立.即恒成立,利用换元法以及基本不等式求解最小值即可【详解】(1)设甲工程队的总造价为元,则,当且仅当,即时等号成立即当左右两侧墙的长度为5米时,甲工程队的报价最低为4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论