版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届河南省开封市祥符区数学高二上期末联考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆C的焦点为,过F2的直线与C交于A,B两点.若,,则C的方程为A. B.C. D.2.已知且,则下列不等式恒成立的是A. B.C. D.3.已知直线经过抛物线的焦点,且与该抛物线交于,两点,若满足,则直线的方程为()A. B.C. D.4.已知平面法向量为,,则直线与平面的位置关系为A. B.C.与相交但不垂直 D.5.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.6.己知F为抛物线的焦点,过F作两条互相垂直的直线,,直线与C交于A、B两点,直线与C交于D、E两点,则的最小值为()A.24 B.22C.20 D.167.《九章算术》是我国古代的数学巨著,书中有如下问题:“今有大夫、不更、簪褭、上造、公士,凡五人,共出百銭.欲令高爵出少,以次渐多,問各幾何?”意思是:“有大夫、不更、簪褭、上造、公士(大夫爵位最高,爵位依次从高变低)5个人共出100钱,按照爵位从高到低每人所出钱数成等差数列,问这5个人各出多少钱?”在这个问题中,若公士出28钱,则不更出的钱数为()A.14 B.20C.18 D.168.已知数列满足,,数列的前n项和为,若,,成等差数列,则n=()A.6 B.8C.16 D.229.在正项等比数列中,和为方程的两根,则等于()A.8 B.10C.16 D.3210.在平面直角坐标系中,双曲线的右焦点为,过双曲线上一点作轴的垂线足为,若,则该双曲线的离心率为()A. B.C. D.11.已知点是椭圆的左右焦点,椭圆上存在不同两点使得,则椭圆的离心率的取值范围是()A. B.C. D.12.已知函数的部分图象如图所示,且经过点,则()A.关于点对称B.关于直线对称C.为奇函数D.为偶函数二、填空题:本题共4小题,每小题5分,共20分。13.已知抛物线的焦点为F,若抛物线上一点P到x轴的距离为2,则|PF|的值为___________.14.经过点,的直线的倾斜角为___________.15.抛物线的焦点为F,准线为l,C上的一点M在l上的射影为N,已知线段FN的垂直平分线方程为,则___________;___________.16.已知直线与直线平行,则实数m的值为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)数列中,,且.(1)证明;数列是等比数列.(2)若,求数列的前n项和.18.(12分)数列的前n项和为,(1)求数列的通项公式;(2)令,求数列的前n项和19.(12分)如图,已知椭圆的短轴端点为、,且,椭圆C的离心率,点,过点P的动直线l椭圆C交于不同的两点M、N与,均不重合),连接,,交于点T(1)求椭圆C的方程;(2)求证:当直线l绕点P旋转时,点T总在一条定直线上运动;(3)是否存在直线l,使得?若存在,求出直线l的方程;若不存在,请说明理由20.(12分)已知直线,直线,直线(1)若与的倾斜角互补,求m的值;(2)当m为何值时,三条直线能围成一个直角三角形21.(12分)近年来某村制作的手工艺品在国内外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(ⅰ)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ⅱ)若3位行家中仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关.若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级;若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(ⅲ)若3位行家中有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立(1)求一件手工艺品质量为B级的概率;(2)求81件手工艺品中,质量为C级的手工艺品件数的方差;(3)求10件手工艺品中,质量为D级的手工艺品最有可能是多少件?22.(10分)如图,P为圆上一动点,点A坐标为,线段AP的垂直平分线交直线BP于点Q(1)求点Q的轨迹E的方程;(2)过点A的直线l交E于C,D两点,若△BCD内切圆的半径为,求直线l的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由已知可设,则,得,在中求得,再在中,由余弦定理得,从而可求解.【详解】法一:如图,由已知可设,则,由椭圆的定义有.在中,由余弦定理推论得.在中,由余弦定理得,解得所求椭圆方程为,故选B法二:由已知可设,则,由椭圆的定义有.在和中,由余弦定理得,又互补,,两式消去,得,解得.所求椭圆方程为,故选B【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养2、C【解析】∵且,∴∴选C3、C【解析】求出抛物线的焦点,设出直线方程,代入抛物线方程,运用韦达定理和向量坐标表示,解得,即可得出直线的方程.【详解】解:抛物线的焦点,设直线为,则,整理得,则,.由可得,代入上式即可得,所以,整理得:.故选:C.【点睛】本题考查直线和抛物线的位置关系,主要考查韦达定理和向量共线的坐标表示,考查运算能力,属于中档题.4、A【解析】.本题选择A选项.5、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.6、A【解析】由抛物线的性质:过焦点的弦长公式计算可得.【详解】设直线,的斜率分别为,由抛物线的性质可得,,所以,又因为,所以,所以,故选:A.7、D【解析】根据题意,建立等差数列模型,结合等差数列公式求解即可.【详解】解:根据题意,设每人所出钱数成等差数列,公差为,前项和为,则由题可得,解得,所以不更出的钱数为.故选:D.8、D【解析】利用累加法求得列的通项公式,再利用裂项相消法求得数列的前n项和为,再根据,,成等差数列,得,从而可得出答案.【详解】解:因为,且,所以当时,,因为也满足,所以.因为,所以.若,,成等差数列,则,即,得.故选:D.9、C【解析】根据和为方程两根,得到,然后再利用等比数列的性质求解.【详解】因为和为方程的两根,所以,又因为数列是等比数列,所以,故选:C10、A【解析】根据条件可知四边形为正方形,从而根据边长相等,列式求双曲线的离心率.【详解】不妨设在第一象限,则,根据题意,四边形为正方形,于是,即,化简得,解得(负值舍去).故选:A.11、C【解析】先设点,利用向量关系得到两点坐标之间的关系,再结合点在椭圆上,代入方程,消去即得,根据题意,构建的齐次式,解不等式即得结果.【详解】设,由得,,,即,由在椭圆上,故,即,消去得,,根据椭圆上点满足,又两点不同,可知,整理得,故,故.故选:C.【点睛】关键点点睛:圆锥曲线中离心率的计算,关键是根据题中条件,结合曲线性质,找到一组等量关系(齐次式),进而求解离心率或范围.12、D【解析】根据图象求得函数解析式,结合三角函数的图象与性质,逐项判定,即可求解.【详解】由题意,可得,根据图形走势,可得,解得,令,可得,所以,由,所以A不正确;由,可得不是函数的对称轴,所以B不正确;由,此时函数为非奇非偶函数,所以C不正确;由为偶函数,所以D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、3【解析】先求出抛物线的焦点坐标和准线方程,再利用抛物线的定义可求得答案【详解】抛物线的焦点为,准线为,因为抛物线上一点P到x轴的距离为2,所以由抛物线的定义可得,故答案为:314、【解析】根据两点间斜率公式得到斜率,再根据斜率确定倾斜角大小即可.【详解】根据两点间斜率公式得:,所以直线的倾斜角为:.故答案为:15、①.2②.4【解析】设点,根据给定条件结合抛物线定义可得线段FN的中点及点M都在线段FN的垂直平分线,再列式计算作答.【详解】抛物线的焦点,准线l:,设点,则,线段FN的中点,由抛物线定义知:,即点M在线段FN的垂直平分线,因此,,解得,而,则有,,所以,.故答案为:2;4【点睛】结论点睛:抛物线方程中,字母p的几何意义是抛物线的焦点F到准线的距离,等于焦点到抛物线顶点的距离16、【解析】由两直线平行的判定可得求解即可,注意验证是否出现直线重合的情况.【详解】由题设,,解得,经检验满足题设.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解析】(1)根据递推公式,结合等差数列的定义、等比数列的定义进行证明即可;(2)运用裂项相消法进行求解即可.【小问1详解】∵,∴,又∵,∴,∴数列是首项为0,公差为1的等差数列,∴,∴,从而,∴数列是首项为2,公比为2的等比数列;【小问2详解】由(1)知,则,∴,∴.18、(1);(2).【解析】(1)根据给定条件结合“当时,”计算作答.(2)由(1)求出,利用裂项相消法计算得解.【小问1详解】数列的前n项和为,,当时,,当时,,满足上式,则,所以数列的通项公式是【小问2详解】由(1)知,,所以,所以数列的前n项和19、(1)(2)证明见解析;(3)不存在直线l,使得成立,理由见解析.【解析】(1)根据题意,列出方程组,求得,即可求得椭圆的方程;(2)设直线的方程为,联立方程组求得,设,根据和在同一条直线上,列出方程求得的值,即可求解;(3)设直线的为,把转化为,联立方程组求得,代入列方程,求得,即可得到结论.【小问1详解】解:由题意可得,解得,所以所求椭圆的方程为.【小问2详解】解:由题意,因为直线过点,可设直线的方程为,,联立方程组,整理得,可得,因为直线与椭圆有两个交点,所以,解得,设,因为在同一条直线上,则,①又由在同一条直线上,则,②由①+②3所以,整理得,解得,所以点在直线,即当直线l绕点P旋转时,点T总在一条定直线上运动.【小问3详解】解:由(2)知,点在直线上运动,即,设直线的方程为,且,又由且,可得,即,联立方程组,整理得,可得,代入可得,解得,即,此时直线的斜率不存在,不合题意,所以不存在直线l,使得成立.20、(1)(2)0,,.【解析】(1)根据题意得,进而求解得答案;(2)根据题意,分别讨论与垂直,与垂直,与垂直求解,并检验即可得答案【小问1详解】解:因为与的倾斜角互补,所以,直线变形为,故所以,解得【小问2详解】解:由题意,若和垂直可得:,解得,因为当时,,,,构不成三角形,当时,经验证符合题意;故;同理,若和垂直可得:,解得,舍去;若和垂直可得:,解得或,经验证符合题意;故m的值为:0,,.21、(1)(2)(3)2件【解析】(1)根据相互独立事件的概率公式计算可得;(2)首先求出一件手工艺品质量为C级的概率,设81件手工艺品中质量为C级的手工艺品是X件,则,再根据二项分布的方差公式计算可得;(3)首先求出一件手工艺品质量为D级的概率,设10件手工艺品中质量为D级的手工艺品是ξ件,则,根据二项分布的概率公式求出的最大值,即可得解;【小问1详解】解:一件手工艺品质量为B级的概率为【小问2详解】解:一件手工艺品质量为C级的概率为,设81件手工艺品中质量为C级的手工艺品是X件,则,所以【小问3详解】解:一件手工艺品质量为D级
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 游乐设备产业链协同发展研究-洞察分析
- 芭蕾舞蹈培训班招生宣传
- 2024年新型城镇化建设项目招商引资合作协议范本3篇
- 2024年02月江苏2024年中信银行南京分行社会招考(222)笔试历年参考题库附带答案详解
- 采购合同跟踪的案例分享与解读3篇
- 采购框架合同共进步3篇
- 2024年度房地产中介买卖合同范本:含房屋买卖合同生效条件3篇
- 采购合同补充协议模板范例3篇
- 采购合同预付款的税务筹划3篇
- 采购商品电子合同3篇
- 积分上链方案
- 国家开放大学电大《小学语文教学研究》形考任务3-4试题及答案
- 通用劳务合同Word模板下载(多份)
- 第七讲 磁电选
- 英语主格宾格及其练习题
- 三七种植项目可行性方案
- 国内外河湖生态保护与修复技术标准进展综述
- 室内墙面喷涂与涂饰
- Unit2HowoftendoyouexerciseSectionA(1a-2d)教案人教版英语八年级上册
- 光伏电站事故处理规程
- 山东专升本计算机-演示文稿软件-Powerpoint-2010课件(新版考试大纲)
评论
0/150
提交评论