监管科技与银行流动性风险:来自中国上市银行的证据_第1页
监管科技与银行流动性风险:来自中国上市银行的证据_第2页
监管科技与银行流动性风险:来自中国上市银行的证据_第3页
监管科技与银行流动性风险:来自中国上市银行的证据_第4页
监管科技与银行流动性风险:来自中国上市银行的证据_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

AppliedEconomicsLetters

ISSN:(Print)(Online)Journalhomepage:

/journals/rael20

Internalregulatorytechnology(RegTech)andbank

liquidityrisk:evidencefromChineselistedbanks

YufeiXia,XuyanLu,ZimingHao&HuiyiShi

Tocitethisarticle:YufeiXia,XuyanLu,ZimingHao&HuiyiShi(09Sep2024):Internal

regulatorytechnology(RegTech)andbankliquidityrisk:evidencefromChineselistedbanks,AppliedEconomicsLetters,DOI:

10.1080/13504851.2024.2400310

Tolinktothisarticle:

/10.1080/13504851.2024.2400310

Viewsupplementarymaterial

Publishedonline:09Sep2024.

Submityourarticletothisjournal

Articleviews:45

Viewrelatedarticles

ViewCrossmarkdata

FullTerms&Conditionsofaccessandusecanbefoundat

/action/journalInformation?journalCode=rael20

Routledge

Taylor&FrancisGroup

APPLIEDECONOMICSLETTERS

/10.1080/13504851.2024.2400310

checkfrupdates

Internalregulatorytechnology(RegTech)andbankliquidityrisk:evidencefromChineselistedbanks

Yufei

Xiaa

,XuyanLu

b

,ZimingHao

b

andHuiyiShi

a

aBusinessSchool,JiangsuNormalUniversity,Xuzhou,Jiangsu,PRChina;bSino-RussiaCollege,JiangsuNormalUniversity,Xuzhou,Jiangsu,PRChina

KEYWORDS

Regulatorytechnology;bank;liquidityrisk;text-mining

JELCLASSIFICATION

G21;G28;O14

ABSTRACT

Weexaminetheeffectofinternalregulatorytechnology(RegTech)onbankliquidityrisk.BasedonadatasetofChineselistedbanksfrom2015to2022,weinitiallyemployatext-miningmethodtobuildtheinternalRegTechindexfromthebanks’annualreports.WesubsequentlyrevealasignificantmitigationeffectofinternalRegTechonbankliquidityrisk.Thefindingremainsrobustafteralleviatingtheendogeneityissueandunderalternativeproxyofthedependentvariableanddifferentsampleperiods.ApossiblechannelisthatinternalRegTechbooststheregulatorycapabilityandmitigatesbanks’riskybehaviours.Moreover,ourresultsdemonstratesomehetero-geneitiesacrossRegTechsubindices.Thecomplianceandtechnologicalfoundationssubindicesaremoreprofoundinaffectingbankliquidityrisk.ThefindingsprovidevaluableimplicationsforfinancialregulatorsregardingtheadoptionofRegTech.

I.Introduction

Bankliquidityriskreferstoabank’sinabilitytomeetitspaymentobligationsasliabilitiesfalldue.Thetraditionalbankingtheoryhighlightsthatmaturitytransformationenhancesbanks’profitabilitybutexposesbankstoathreatofliquidityriskandbankruns.ThedownfallofSiliconValleyBankshockedtheglobalfinancialsystem,andoneofthemajorreasonswaspoorliquiditymanagement.Currentresearchhighlightsthedeterminantsofliquidityrisk,includ-ingbank-levelfactors(Abdul-Rahman,Sulaiman,andMohdSaid

2018

)andmonetarypolicy(Nguyen,Nguyen,andDuong

2023

).Moreover,financialregulationisadirectsolutiontobankliquid-ityrisk(Raz,McGowan,andZhao

2022

).

Thestringentregulatorystandardsandtraditionalregulatorymodelshaveposednumerouscompliancecoststobanksandhavelongbeendebatedbecauseofregulatorylagandinconsistency,whichspurtheemergenceofregulatorytechnology(RegTech).RegTechdescribedtechnologyusageinregulation,monitoring,reporting,andcompliance(Buckleyetal.

2020

).ThedefinitionfallsintotheinternalRegTechpoweredbytheregulatedentitiestoenhancecomplianceeffectiveness(Teichmann,

Boticiu,andSergi

2023

)andimproveriskmanage-ment(Chaoetal.

2022

).

RegTechcanalsobedrivenbyregulatoryautho-rities,referredtoasexternalRegTech,whichimpliesadoptingtechnologyinfinancialregulationforhigherregulatoryefficiencyandcapability.ThereisapotentialinteractionbetweeninternalandexternalRegTech.Theoretically,internalRegTechcanmitigateliquidityriskintwoways.MonitoringandKnow-Your-Customersystemscandirectlyidentifyandprovideanearlywarningofpotentialrisks.Indirectly,theinternalRegTechestablishesanefficientinformationandreportingsystem,whichboostsautomaticandtimelyregula-tion.However,thereisanoticeableresearchgapregardingtheroleofinternalRegTechonbankliquidityrisk.Thispaper,therefore,aimstobridgetheknowledgegap.

Themarginalcontributionofthispaperisthree-fold.First,weenterintothedebateonthenexusbetweenfinancialregulationandbankliquidityriskandprovidesolidevidenceontherisk-mitigationeffectofinternalRegTech.Second,wearethefirsttomeasurethebank-levelRegTechandempiricallyexplorethenexus.Theempiricalresultscan

CONTACTYufeiXia6020180093@自BusinessSchool,JiangsuNormalUniversity,Xuzhou,Jiangsu221116,PRChinaSupplementaldataforthisarticlecanbeaccessedonlineat

/10.1080/13504851.2024.2400310

.

©2024InformaUKLimited,tradingasTaylor&FrancisGroup

2四Y.XIAETAL.

supplementtheabundanttheoreticalanalysisofRegTechonriskmanagement(Buckleyetal.

2020

;Chaoetal.

2022

).Finally,weperformamechanismanalysisofhowinternalRegTechaffectsbankliquid-ityrisk.

II.Dataandvariables

Sample

Weselectedall41commercialbankslistedinthe

ChineseA-sharemarketfrom2015to2022asthesample.Thesebanksaccountedforapproximately84%ofthetotalassetsofthewholeChinesebank-ingindustryin2022.ThedatasetwascollectedfromtheCSMARdatabase,thecommercialbanks’annualreport,andtheStateAdministrationforFinancialRegulationwebsite.

Variables

Dependentvariable

WefollowGhenimi,Chaibi,andOmri(

2017

)toemploytheliquidityratio(LDR)asaproxyofbankliquidityrisk,whichiscomputedas:

whereLAandLLdenotetheliquidassetsandliquidliabilities,respectively.WetakethenaturallogarithmoftheLDR(LnLDR).

Coreexplanatoryvariable

TheinternalRegTechindexisutilizedtomea-suretheapplicationofRegTechinbanks.Weemployatext-miningmethodtobuildthe

internalRegTechindexfromthebanks’annualreports.Brieflyspeaking,weselectaseriesofRegTech-relatedkeywordsandcountthewordfrequencyofthesekeywords.Thenaturalloga-rithmofthefrequencyisemployedasaproxyoftheinternalRegTech(LnRegTech)(seedetailsinAppendixA).

Controlvariables

WefollowAbdul-Rahman,Sulaiman,andMohdSaid(

2018

)andRaz,McGowan,andZhao(

2022

)toemployreturnonassets(ROA),banksize(SIZE),capitaladequacyratio(CAR),netinterestmargin(NIM),non-interestincomeratio(NIIR),netprofitmarginonincome(NPGOI),administrativeexpensesonincome(AEGOI),andtotalassetsturnover(TAT).Thesummarystatisticsanddefinitionsaredisplayedin

Table1

.

Econometricmodel

ToexaminetheimpactofinternalRegTechonbankliquidityrisk,weconstructthefollowingtwo-wayfixed-effectmodel:

LnLDRi,t=uo+u1lnregtechi,t+a2controli,t+i+t+ei,t,

(2)

whereiandtdenotethei-thbankandthet-thyear,respectively.TheControlindicatesthecontrolvariables.δandμimplythebankandyearfixedeffects,respectively.εistheerror

term.

Table1.Summarystatistics.

Variable

Obs

Mean

SD

Min

Max

Definition

LnLDR

326

4.737

0.928

1.386

5.720

,、ln100×

LnRegTechROA

326

326

5.383

0.008

0.709

0.002

2.890

0.004

7.069

0.016

Thenaturallogarithmofwordfrequencyoftheinternal

RegTech-relatedkeywords

Netprofit/Totalassets

SizeCAR

326

326

1.44313.789

0.0261.582

1.40110.940

1.49418.420

Naturallogarithmoftotalassets(inhundredbillion)Capital/Risk-weightedassets

NIM

326

2.226

0.401

1.520

3.460

100×Netinterestincome/Interest-earningassets

NIIR

326

21.122

10.201

0.679

44.233

100×Non-interestincome/Netincomefromoperations

NPGOI

326

32.637

6.306

14.771

44.570

100×Netprofit/Revenue

AEGOI

326

30.272

6.137

20.644

60.807

100×AdministrativeExpenses/Netincomefromoperations

TAT

326

0.027

0.004

0.018

0.039

Revenue/Totalassets

Thecontinuousvariablesarewinsorizedatthe1%and99%levels.Obs=thenumberofobservations.SD=standarddeviation.Min=theminimumvalue.Max=themaximumvalue.

APPLIEDECONOMICSLETTERS四3

III.Results

Resultsofbaselineregression

Table2

displaystheresultsofbaselineestima-tions.ThecoefficientsofLnRegTechinallthecolumnsaresignificantlypositiveata5%sig-nificancelevel,suggestingthatadoptinginter-nalRegTechcansignificantlyreducebankliquidityrisk.Column(2)indicatesthatifLnRegTechincreasesbyonestandarddeviation,theLnLDRwillincreaseby26.45%,roughlyconstituting5.58%(=0.373×0.709/4.737)ofthemeanvalueoftheLnLDR.TheresultsofColumns(3)to(6)indicatethatourfindingsareinsensitivetodifferentclusteredstandarderrors,whichpartiallyshowstherobustnessofourconclusion.TheresultsareconsistentwithLiu,Wang,andZhang(

2024

).AlthoughsomepriorstudieshaverevealedthatFinTechreducedbanks’liquidity(Tang,Hu,etal.

2024

)andspurredcorporaterisk-taking(Tang,Hou,etal.

2024

),ourfindingssupporttheuseofRegTechtoalleviatethepotentialeffectsofFinTechonfinancialinstability.

Robustnesschecks

Endogeneity

WeinitiallyfollowBorusyakandHull(

2023

)toemployaninstrumentalvariable(IV)approachandconstructaBartikIV(orShift-ShareIV),whichistheproductofthelaggedfirst-orderinter-nalRegTechindexLnRegTechi;t—1(Share)andthefirst-ordertimedifferenceofinternalRegTechindex,ΔLnRegTecht;t—1(Shift).BartikIVinherentlyusestheweightedaverageofShareandShifttocreateapredictionofLnRegTechforeachobserva-tion.BartikIVispotentiallyvalidsinceitisuncor-relatedwiththeresidualsbecausetheinitialshareandcommonshockinBartikIVareexogenousvariablesnotdrivenbythecurrentbank’sdecision-making,whichmeetstheindependenceassump-tion.Moreover,asapredictionofLnRegTech;theBartikIVishighlycorrelatedwiththeinternalRegTechlevel,whichsatisfiestherelevanceassumption.

Table3

displaystheresultsofthetwo-stageleastsquaresregression.Column(1)showsthattheBartikIVissignificantlypositiveata1%level.Meanwhile,thesecond-stageregressionresultsare

Table2.Baselineresults.

Variables

(1)

(2)

(3)

(4)

(5)

(6)

LnLDR

LnLDR

LnLDR

LnLDR

LnLDR

LnLDR

LnRegTech

0.323**

0.373***

0.373***

0.373***

0.373***

0.373**

(0.125)

(0.128)

(0.046)

(0.110)

(0.088)

(0.149)

ROA

−0.611

−0.611**

−0.611

−0.611*

−0.611**

(0.397)

(0.181)

(0.387)

(0.351)

(0.235)

Size

33.134

33.134

33.134

33.134**

33.134

(29.650)

(33.287)

(36.207)

(16.136)

(59.794)

CAR

0.012

0.012

0.012

0.012

0.012

(0.044)

(0.042)

(0.048)

(0.050)

(0.055)

NIM

0.419

0.419***

0.419*

0.419*

0.419

(0.257)

(0.026)

(0.246)

(0.244)

(0.246)

NIIR

0.011

0.011

0.011

0.011*

0.011

(0.008)

(0.005)

(0.008)

(0.005)

(0.009)

NPGOI

0.004

0.004

0.004

0.004

0.004

(0.019)

(0.004)

(0.019)

(0.015)

(0.023)

AEGOI

−0.059***

−0.059***

−0.059***

−0.059***

−0.059**

(0.021)

(0.006)

(0.020)

(0.012)

(0.026)

TAT

−34.278

−34.278***

−34.278

−34.278

−34.278

(32.226)

(3.201)

(32.277)

(27.120)

(27.082)

Constant

2.999***

−43.314

−43.314

−43.314

−43.314*

−43.314

(0.676)

(42.783)

(49.063)

(52.041)

(23.990)

(86.671)

Observations

326

326

326

326

326

326

R-squared

0.486

0.510

0.510

0.510

0.510

0.510

Bankfixedeffect

Yes

Yes

Yes

Yes

Yes

Yes

Yearfixedeffects

Yes

Yes

Yes

Yes

Yes

Yes

Clusteredstandarderror

Bank

Bank

Type

Province×Year

Type×Year

Province×Bank

***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Clusteredstandarderrorsarereportedinparentheses.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.Column(1)excludesthecontrolvariables,andColumn(2)correspondstothemodelspecificationdescribedinEq.(1).Theremainingcolumnsdifferinclusteredstandarderror.

1TheinstitutionalbackgroundofEASTisclarifiedintheAppendixB.

4四Y.XIAETAL.

Table3.Resultsoftwo-stageleastsquares(2SLS)regression.

VARIABLES

(1)

LnRegTech

(2)LnLDR

LnRegTech

0.913***(0.309)

BartikIV

0.409***(0.133)

Controls

Yes

Yes

Bankfixedeffect

Yes

Yes

Yearfixedeffects

Yes

Yes

Observations

285

285

Cstatistic

4.55**

Kleibergen-PaaprkLMstatistic

8.13***

Cragg-DonaldWaldFstatistic

70.31***

***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Therobuststandarderrorsarereportedinparentheses.Columns(1)and(2)presenttheresultsofthefirstandsecondstagesofthe2SLSregression,withLnRegTechandLnLDRasthedependentvariables,respectively.TherowsCstatistic,Kleibergen-PaaprkLMstatistic,andCragg-DonaldWaldFstatisticdenotetheresultsoftheendogeneity,underidentification,andweakidentificationtests,respectively.

consistentwith

Table2

andconfirmourexpecta-tions.TheCstatisticshowsthatthebank-levelRegTechshouldnotbetreatedasexogenous.Moreover,theKleibergen-PaaprkLMandCragg-DonaldWaldFstatisticssuggestnounderidentifi-cationorweakIVconcerns,whichshowstheIVapproach’srobustness.

WesubsequentlyemployaRegTech-relatedquasi-experiment,namelythepromotionofExaminationandAnalysisSystemTechnology(EAST),

1

toexploretheroleofinternalRegTechonbankliquidityrisk.Wedeterminethesampleperiodfrom2012to2022toensuresufficientpre-

eventobservations.Astaggereddifference-in-difference(DID)approachisemployedtoalleviateendogeneitybiasasfollows:

LnLDRit='o+uEASTit+u2controlit+i+t十Eit,

(3)

whereEASTistheinteractiontermoftimeandtreatmentvariables.

Table4

suggeststhatthecoef-ficientofEASTissignificantlypositiveforallmodelspecifications.Ineconomicterms,theLnLDRincreasedby5.83%(=0.276×1/4.737)afteradoptingEAST,asdisplayedinColumn(2).Theresults,again,agreewiththefindingsinbase-lineregression.Wefurtherperformparalleltrendsandplacebotestsforrobustnesschecks(seeAppendixC).Theresultssupporttheconsistencyofourconclusions.

Alternativeproxyofbankliquidityrisk

Weemploythenaturallogarithmoftheliquiditycoverageratio(LnLCR)asaproxyofthedependentvariable,followingtherequirementofBaselIII.TheestimatedcoefficientsaredisplayedinColumn(5)of

Table4

,suggestinginternalRegTechcansignificantlydecreaseliquidityrisk.Theresultsagainconfirmtherobustnessoftheempiricalresearch.

Table4.Resultsofthedifference-in-difference(DID)approachandotherrobustnesschecks.

(1)

(2)(3)

(4)

(5)

(6)

DIDestimation

Alternativecorevariable

Alternativesampleperiod

VARIABLES

LnLDR

LnLDR

LnLDR

LnLDR

LnLCR

LnLDR

EAST

0.240***

0.276***

0.240*

0.276**

(0.021)

(0.020)

(0.120)

(0.126)

LnRegTech

0.080**(0.037)

0.333**(0.159)

Constant

4.862***

−8.811

4.862***

−8.811

−5.050

−53.440

(0.014)

(27.265)

(0.084)

(37.982)

(19.024)

(57.256)

Controls

No

Yes

No

Yes

Yes

Yes

Observations

439

439

439

439

274

285

R-squared

0.456

0.492

0.492

0.491

0.731

0.503

Bankfixedeffect

Yes

Yes

Yes

Yes

Yes

Yes

Yearfixedeffects

Yes

Yes

Yes

Yes

Yes

Yes

Clusteredstandarderror

Type

Type

Province

Province

Bank

Bank

***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.EASTrepresentsthepromotionofExaminationandAnalysisSystemTechnology.

EASTisassignedto

1ifthecorre,spondingbankhasbeenincludedintheEA、STand0otherwise.LnLCRindicatesthenaturallogarithmoftheliquiditycoverage

ratio,computedas

LnLCR=ln100×.

2SeeadditionalchanneltestsundertheendogeneityconcerninAppendixD.

APPLIEDECONOMICSLETTERS四5

Table5.Resultsofchanneltestandcross-sectionalanalysis.

(1)

C

(2)

(3)

t

(4)

(5)

(6)

hanneltes

Compliance

Regulation

Technologicalfoundation

VARIABLES

LnAAP

LnAAP

LnAAP

LnLDR

LnLDR

LnLDR

LnRegTech

−0.570***

−0.570**

−0.570***

(0.188)

(0.166)

(0.126)

LnCom

0.366**(0.151)

LnReg

0.216(0.129)

LnTech

0.341***(0.114)

Constant

−185.426*

−185.426

−185.426

−52.531

−31.332

−38.993

(106.822)

(106.790)

(124.584)

(55.182)

(49.070)

(52.205)

Controls

Yes

Yes

Yes

Yes

Yes

Yes

Observations

326

326

326

326

326

326

R-squared

0.781

0.781

0.781

0.510

0.503

0.509

Bankfixedeffect

Yes

Yes

Yes

Yes

Yes

Yes

Yearfixedeffects

Yes

Yes

Yes

Yes

Yes

Yes

Clusteredstandarderror

Bank

Type

Province

Bank

Bank

Bank

***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.ThecolumnsofCompliance,Regulation,andTechnologicalfoundationrepresenttheresultscorrespondingtothecasesemployingthethreeapplication-scenario-relatedsubindices(i.e.complianceapplication,regulatoryapplication,andtechnologicalfoundationasthecorevariable.ThethreeRegTechsubindicesaremeasuredbythenaturallogarithmofthekeywordfrequencies,denotedasLnCom,LnReg,andLnTech,respectively.

Alternativesampleperiod

TheChineseA-sharemarketexperiencedahistoricfallinJune2015.Thehugemarketfluctuationmayspillovertothebankingsectorandleadtoaliquiditycrisis.We,therefore,removetheperiodoftheextra-ordinaryfall(i.e.theyear2015)andshowtheresultsinColumn(6)of

Table4

.ThesignificantlypositivecoefficientofinternalRegTechagainconfirmstherobustnessofourresults.

Potentialchannels

ThenexusbetweeninternalandexternalRegTechsuggeststhattheformercanboosttheautomaticandtimelyregulationofbanks’behaviours,contri-butingtoenhancedregulatorycapability.Thetigh-tenedregulationandsanctionsmayfurtherdisciplinebanks’risk-taking(Gaoetal.

2020

).

Tovalidateourconjecture,weexaminethe

effectsofinternalRegTechonregulatorycapabil-

ity,proxiedbythenaturallogarithmofadminis-

trativepenalty(LnAAP)inColumns(1)-(3)in

Table5

.TheresultssuggestthatinternalRegTech

significantlydecreasesLnAAPatthe5%level,and

thecoefficientsare−0.570forallcolumns.

2

ApossiblereasonisthatinternalRegTechcan

helptheregulatorsaccuratelyidentifybanks’mis-

conductanddeterbanks’riskybehaviours.

Cross-sectionalanalysis

InternalRegTechmayplaydiverserolesandimpactsindifferentapplicationscenarioswithinthebankingindustry.WefurtherseparatetheinternalRegTechindexintothreesubindicesbasedontheapplicationscenarios:complianceapplication,regulatoryapplication,andtechnolo-gicalfoundation.Columns(4)to(6)in

Table5

displaytheresultsforRegTechsubindices,reveal-ingthatthecomplianceandtechnologicalfounda-tionaremoreprofoundinaffectingbanks’liquidityrisk.Apossibleexplanationistheirrelativelymatureandwidespreadapplicationscomparedtosupervisionusage.

IV.Conclusions

Inthispaper,weexplorethecausaleffectofinternalRegTechonbankliquidityrisk.BasedonadatasetofChineselistedbanksfrom2015to2022,werevealasignificantmitigationeffectofinternalRegTechonbankliquidityrisk.Thefindingremainsrobustafteralleviatingtheendogeneityissueandunderalternativeproxyofthedependentvariableanddifferentsampleperiods.ApossiblechannelisthatinternalRegTechbooststheregulatorycapabilityandmitigatesbanks’riskybehaviours.The

6四Y.XIAETAL.

complianceandtechnologicalfoundationssub-indicesaremoreprofoundinaffectingbankliquidityrisk.

Ourresearchoffersvaluableimplicationsforbanksandfinancialregulators.Forbanks,investmentininternalRegTechshouldbeencouragedtolowercompliancecostsandimproveliquidityriskmanagement.Furtherexplorationsonsupervisionusageareexpected.Fromaregulatorystandpoint,advancedtech-nologiescanbeincorporatedintoregulatorypracticetoenforcepenetratingsupervisionandbridgetheregulatorygap.Theenhancedexter-nalregulatorycapabilitycanboostinternalRegTech’seffectonbanks’liquidityriskcontrol.Ourresearchstillsuffersfromsomelimitations.

First,weconsideronlythelistedbanksduetodataavailability.Second,morechannelswithinthenexusbetweenRegTechandbankliquidityriskwarrantfurtherinvestigations.

Disclosurestatement

Nopotentialconflictofinterestwasreportedbytheauthor(s).

Funding

ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina[72103082]andtheNationalTrainingProgramofInnovationandEntrepreneurshipforUndergraduates[202310320016Z].

References

Abdul-Rahman,A.,A.A.Sulaiman,andN.L.H.MohdSaid.

2018

.“DoesFinancingStructureAffectsBankLiquidityRisk?”Pacific-BasinFinanceJournal52:26–39.

https://doi.

org/10.1016/j.pacfin.2017.04.004

.

Borusyak,K.,andP.Hull.

2023

.“NonrandomExposuretoExogenousShocks.”Ec

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论