版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
AppliedEconomicsLetters
ISSN:(Print)(Online)Journalhomepage:
/journals/rael20
Internalregulatorytechnology(RegTech)andbank
liquidityrisk:evidencefromChineselistedbanks
YufeiXia,XuyanLu,ZimingHao&HuiyiShi
Tocitethisarticle:YufeiXia,XuyanLu,ZimingHao&HuiyiShi(09Sep2024):Internal
regulatorytechnology(RegTech)andbankliquidityrisk:evidencefromChineselistedbanks,AppliedEconomicsLetters,DOI:
10.1080/13504851.2024.2400310
Tolinktothisarticle:
/10.1080/13504851.2024.2400310
Viewsupplementarymaterial
Publishedonline:09Sep2024.
Submityourarticletothisjournal
Articleviews:45
Viewrelatedarticles
ViewCrossmarkdata
FullTerms&Conditionsofaccessandusecanbefoundat
/action/journalInformation?journalCode=rael20
Routledge
Taylor&FrancisGroup
APPLIEDECONOMICSLETTERS
/10.1080/13504851.2024.2400310
checkfrupdates
Internalregulatorytechnology(RegTech)andbankliquidityrisk:evidencefromChineselistedbanks
Yufei
Xiaa
,XuyanLu
b
,ZimingHao
b
andHuiyiShi
a
aBusinessSchool,JiangsuNormalUniversity,Xuzhou,Jiangsu,PRChina;bSino-RussiaCollege,JiangsuNormalUniversity,Xuzhou,Jiangsu,PRChina
KEYWORDS
Regulatorytechnology;bank;liquidityrisk;text-mining
JELCLASSIFICATION
G21;G28;O14
ABSTRACT
Weexaminetheeffectofinternalregulatorytechnology(RegTech)onbankliquidityrisk.BasedonadatasetofChineselistedbanksfrom2015to2022,weinitiallyemployatext-miningmethodtobuildtheinternalRegTechindexfromthebanks’annualreports.WesubsequentlyrevealasignificantmitigationeffectofinternalRegTechonbankliquidityrisk.Thefindingremainsrobustafteralleviatingtheendogeneityissueandunderalternativeproxyofthedependentvariableanddifferentsampleperiods.ApossiblechannelisthatinternalRegTechbooststheregulatorycapabilityandmitigatesbanks’riskybehaviours.Moreover,ourresultsdemonstratesomehetero-geneitiesacrossRegTechsubindices.Thecomplianceandtechnologicalfoundationssubindicesaremoreprofoundinaffectingbankliquidityrisk.ThefindingsprovidevaluableimplicationsforfinancialregulatorsregardingtheadoptionofRegTech.
I.Introduction
Bankliquidityriskreferstoabank’sinabilitytomeetitspaymentobligationsasliabilitiesfalldue.Thetraditionalbankingtheoryhighlightsthatmaturitytransformationenhancesbanks’profitabilitybutexposesbankstoathreatofliquidityriskandbankruns.ThedownfallofSiliconValleyBankshockedtheglobalfinancialsystem,andoneofthemajorreasonswaspoorliquiditymanagement.Currentresearchhighlightsthedeterminantsofliquidityrisk,includ-ingbank-levelfactors(Abdul-Rahman,Sulaiman,andMohdSaid
2018
)andmonetarypolicy(Nguyen,Nguyen,andDuong
2023
).Moreover,financialregulationisadirectsolutiontobankliquid-ityrisk(Raz,McGowan,andZhao
2022
).
Thestringentregulatorystandardsandtraditionalregulatorymodelshaveposednumerouscompliancecoststobanksandhavelongbeendebatedbecauseofregulatorylagandinconsistency,whichspurtheemergenceofregulatorytechnology(RegTech).RegTechdescribedtechnologyusageinregulation,monitoring,reporting,andcompliance(Buckleyetal.
2020
).ThedefinitionfallsintotheinternalRegTechpoweredbytheregulatedentitiestoenhancecomplianceeffectiveness(Teichmann,
Boticiu,andSergi
2023
)andimproveriskmanage-ment(Chaoetal.
2022
).
RegTechcanalsobedrivenbyregulatoryautho-rities,referredtoasexternalRegTech,whichimpliesadoptingtechnologyinfinancialregulationforhigherregulatoryefficiencyandcapability.ThereisapotentialinteractionbetweeninternalandexternalRegTech.Theoretically,internalRegTechcanmitigateliquidityriskintwoways.MonitoringandKnow-Your-Customersystemscandirectlyidentifyandprovideanearlywarningofpotentialrisks.Indirectly,theinternalRegTechestablishesanefficientinformationandreportingsystem,whichboostsautomaticandtimelyregula-tion.However,thereisanoticeableresearchgapregardingtheroleofinternalRegTechonbankliquidityrisk.Thispaper,therefore,aimstobridgetheknowledgegap.
Themarginalcontributionofthispaperisthree-fold.First,weenterintothedebateonthenexusbetweenfinancialregulationandbankliquidityriskandprovidesolidevidenceontherisk-mitigationeffectofinternalRegTech.Second,wearethefirsttomeasurethebank-levelRegTechandempiricallyexplorethenexus.Theempiricalresultscan
CONTACTYufeiXia6020180093@自BusinessSchool,JiangsuNormalUniversity,Xuzhou,Jiangsu221116,PRChinaSupplementaldataforthisarticlecanbeaccessedonlineat
/10.1080/13504851.2024.2400310
.
©2024InformaUKLimited,tradingasTaylor&FrancisGroup
2四Y.XIAETAL.
supplementtheabundanttheoreticalanalysisofRegTechonriskmanagement(Buckleyetal.
2020
;Chaoetal.
2022
).Finally,weperformamechanismanalysisofhowinternalRegTechaffectsbankliquid-ityrisk.
II.Dataandvariables
Sample
Weselectedall41commercialbankslistedinthe
ChineseA-sharemarketfrom2015to2022asthesample.Thesebanksaccountedforapproximately84%ofthetotalassetsofthewholeChinesebank-ingindustryin2022.ThedatasetwascollectedfromtheCSMARdatabase,thecommercialbanks’annualreport,andtheStateAdministrationforFinancialRegulationwebsite.
Variables
Dependentvariable
WefollowGhenimi,Chaibi,andOmri(
2017
)toemploytheliquidityratio(LDR)asaproxyofbankliquidityrisk,whichiscomputedas:
whereLAandLLdenotetheliquidassetsandliquidliabilities,respectively.WetakethenaturallogarithmoftheLDR(LnLDR).
Coreexplanatoryvariable
TheinternalRegTechindexisutilizedtomea-suretheapplicationofRegTechinbanks.Weemployatext-miningmethodtobuildthe
internalRegTechindexfromthebanks’annualreports.Brieflyspeaking,weselectaseriesofRegTech-relatedkeywordsandcountthewordfrequencyofthesekeywords.Thenaturalloga-rithmofthefrequencyisemployedasaproxyoftheinternalRegTech(LnRegTech)(seedetailsinAppendixA).
Controlvariables
WefollowAbdul-Rahman,Sulaiman,andMohdSaid(
2018
)andRaz,McGowan,andZhao(
2022
)toemployreturnonassets(ROA),banksize(SIZE),capitaladequacyratio(CAR),netinterestmargin(NIM),non-interestincomeratio(NIIR),netprofitmarginonincome(NPGOI),administrativeexpensesonincome(AEGOI),andtotalassetsturnover(TAT).Thesummarystatisticsanddefinitionsaredisplayedin
Table1
.
Econometricmodel
ToexaminetheimpactofinternalRegTechonbankliquidityrisk,weconstructthefollowingtwo-wayfixed-effectmodel:
LnLDRi,t=uo+u1lnregtechi,t+a2controli,t+i+t+ei,t,
(2)
whereiandtdenotethei-thbankandthet-thyear,respectively.TheControlindicatesthecontrolvariables.δandμimplythebankandyearfixedeffects,respectively.εistheerror
term.
Table1.Summarystatistics.
Variable
Obs
Mean
SD
Min
Max
Definition
LnLDR
326
4.737
0.928
1.386
5.720
,、ln100×
LnRegTechROA
326
326
5.383
0.008
0.709
0.002
2.890
0.004
7.069
0.016
Thenaturallogarithmofwordfrequencyoftheinternal
RegTech-relatedkeywords
Netprofit/Totalassets
SizeCAR
326
326
1.44313.789
0.0261.582
1.40110.940
1.49418.420
Naturallogarithmoftotalassets(inhundredbillion)Capital/Risk-weightedassets
NIM
326
2.226
0.401
1.520
3.460
100×Netinterestincome/Interest-earningassets
NIIR
326
21.122
10.201
0.679
44.233
100×Non-interestincome/Netincomefromoperations
NPGOI
326
32.637
6.306
14.771
44.570
100×Netprofit/Revenue
AEGOI
326
30.272
6.137
20.644
60.807
100×AdministrativeExpenses/Netincomefromoperations
TAT
326
0.027
0.004
0.018
0.039
Revenue/Totalassets
Thecontinuousvariablesarewinsorizedatthe1%and99%levels.Obs=thenumberofobservations.SD=standarddeviation.Min=theminimumvalue.Max=themaximumvalue.
APPLIEDECONOMICSLETTERS四3
III.Results
Resultsofbaselineregression
Table2
displaystheresultsofbaselineestima-tions.ThecoefficientsofLnRegTechinallthecolumnsaresignificantlypositiveata5%sig-nificancelevel,suggestingthatadoptinginter-nalRegTechcansignificantlyreducebankliquidityrisk.Column(2)indicatesthatifLnRegTechincreasesbyonestandarddeviation,theLnLDRwillincreaseby26.45%,roughlyconstituting5.58%(=0.373×0.709/4.737)ofthemeanvalueoftheLnLDR.TheresultsofColumns(3)to(6)indicatethatourfindingsareinsensitivetodifferentclusteredstandarderrors,whichpartiallyshowstherobustnessofourconclusion.TheresultsareconsistentwithLiu,Wang,andZhang(
2024
).AlthoughsomepriorstudieshaverevealedthatFinTechreducedbanks’liquidity(Tang,Hu,etal.
2024
)andspurredcorporaterisk-taking(Tang,Hou,etal.
2024
),ourfindingssupporttheuseofRegTechtoalleviatethepotentialeffectsofFinTechonfinancialinstability.
Robustnesschecks
Endogeneity
WeinitiallyfollowBorusyakandHull(
2023
)toemployaninstrumentalvariable(IV)approachandconstructaBartikIV(orShift-ShareIV),whichistheproductofthelaggedfirst-orderinter-nalRegTechindexLnRegTechi;t—1(Share)andthefirst-ordertimedifferenceofinternalRegTechindex,ΔLnRegTecht;t—1(Shift).BartikIVinherentlyusestheweightedaverageofShareandShifttocreateapredictionofLnRegTechforeachobserva-tion.BartikIVispotentiallyvalidsinceitisuncor-relatedwiththeresidualsbecausetheinitialshareandcommonshockinBartikIVareexogenousvariablesnotdrivenbythecurrentbank’sdecision-making,whichmeetstheindependenceassump-tion.Moreover,asapredictionofLnRegTech;theBartikIVishighlycorrelatedwiththeinternalRegTechlevel,whichsatisfiestherelevanceassumption.
Table3
displaystheresultsofthetwo-stageleastsquaresregression.Column(1)showsthattheBartikIVissignificantlypositiveata1%level.Meanwhile,thesecond-stageregressionresultsare
Table2.Baselineresults.
Variables
(1)
(2)
(3)
(4)
(5)
(6)
LnLDR
LnLDR
LnLDR
LnLDR
LnLDR
LnLDR
LnRegTech
0.323**
0.373***
0.373***
0.373***
0.373***
0.373**
(0.125)
(0.128)
(0.046)
(0.110)
(0.088)
(0.149)
ROA
−0.611
−0.611**
−0.611
−0.611*
−0.611**
(0.397)
(0.181)
(0.387)
(0.351)
(0.235)
Size
33.134
33.134
33.134
33.134**
33.134
(29.650)
(33.287)
(36.207)
(16.136)
(59.794)
CAR
0.012
0.012
0.012
0.012
0.012
(0.044)
(0.042)
(0.048)
(0.050)
(0.055)
NIM
0.419
0.419***
0.419*
0.419*
0.419
(0.257)
(0.026)
(0.246)
(0.244)
(0.246)
NIIR
0.011
0.011
0.011
0.011*
0.011
(0.008)
(0.005)
(0.008)
(0.005)
(0.009)
NPGOI
0.004
0.004
0.004
0.004
0.004
(0.019)
(0.004)
(0.019)
(0.015)
(0.023)
AEGOI
−0.059***
−0.059***
−0.059***
−0.059***
−0.059**
(0.021)
(0.006)
(0.020)
(0.012)
(0.026)
TAT
−34.278
−34.278***
−34.278
−34.278
−34.278
(32.226)
(3.201)
(32.277)
(27.120)
(27.082)
Constant
2.999***
−43.314
−43.314
−43.314
−43.314*
−43.314
(0.676)
(42.783)
(49.063)
(52.041)
(23.990)
(86.671)
Observations
326
326
326
326
326
326
R-squared
0.486
0.510
0.510
0.510
0.510
0.510
Bankfixedeffect
Yes
Yes
Yes
Yes
Yes
Yes
Yearfixedeffects
Yes
Yes
Yes
Yes
Yes
Yes
Clusteredstandarderror
Bank
Bank
Type
Province×Year
Type×Year
Province×Bank
***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Clusteredstandarderrorsarereportedinparentheses.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.Column(1)excludesthecontrolvariables,andColumn(2)correspondstothemodelspecificationdescribedinEq.(1).Theremainingcolumnsdifferinclusteredstandarderror.
1TheinstitutionalbackgroundofEASTisclarifiedintheAppendixB.
4四Y.XIAETAL.
Table3.Resultsoftwo-stageleastsquares(2SLS)regression.
VARIABLES
(1)
LnRegTech
(2)LnLDR
LnRegTech
0.913***(0.309)
BartikIV
0.409***(0.133)
Controls
Yes
Yes
Bankfixedeffect
Yes
Yes
Yearfixedeffects
Yes
Yes
Observations
285
285
Cstatistic
4.55**
Kleibergen-PaaprkLMstatistic
8.13***
Cragg-DonaldWaldFstatistic
70.31***
***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Therobuststandarderrorsarereportedinparentheses.Columns(1)and(2)presenttheresultsofthefirstandsecondstagesofthe2SLSregression,withLnRegTechandLnLDRasthedependentvariables,respectively.TherowsCstatistic,Kleibergen-PaaprkLMstatistic,andCragg-DonaldWaldFstatisticdenotetheresultsoftheendogeneity,underidentification,andweakidentificationtests,respectively.
consistentwith
Table2
andconfirmourexpecta-tions.TheCstatisticshowsthatthebank-levelRegTechshouldnotbetreatedasexogenous.Moreover,theKleibergen-PaaprkLMandCragg-DonaldWaldFstatisticssuggestnounderidentifi-cationorweakIVconcerns,whichshowstheIVapproach’srobustness.
WesubsequentlyemployaRegTech-relatedquasi-experiment,namelythepromotionofExaminationandAnalysisSystemTechnology(EAST),
1
toexploretheroleofinternalRegTechonbankliquidityrisk.Wedeterminethesampleperiodfrom2012to2022toensuresufficientpre-
eventobservations.Astaggereddifference-in-difference(DID)approachisemployedtoalleviateendogeneitybiasasfollows:
LnLDRit='o+uEASTit+u2controlit+i+t十Eit,
(3)
whereEASTistheinteractiontermoftimeandtreatmentvariables.
Table4
suggeststhatthecoef-ficientofEASTissignificantlypositiveforallmodelspecifications.Ineconomicterms,theLnLDRincreasedby5.83%(=0.276×1/4.737)afteradoptingEAST,asdisplayedinColumn(2).Theresults,again,agreewiththefindingsinbase-lineregression.Wefurtherperformparalleltrendsandplacebotestsforrobustnesschecks(seeAppendixC).Theresultssupporttheconsistencyofourconclusions.
Alternativeproxyofbankliquidityrisk
Weemploythenaturallogarithmoftheliquiditycoverageratio(LnLCR)asaproxyofthedependentvariable,followingtherequirementofBaselIII.TheestimatedcoefficientsaredisplayedinColumn(5)of
Table4
,suggestinginternalRegTechcansignificantlydecreaseliquidityrisk.Theresultsagainconfirmtherobustnessoftheempiricalresearch.
Table4.Resultsofthedifference-in-difference(DID)approachandotherrobustnesschecks.
(1)
(2)(3)
(4)
(5)
(6)
DIDestimation
Alternativecorevariable
Alternativesampleperiod
VARIABLES
LnLDR
LnLDR
LnLDR
LnLDR
LnLCR
LnLDR
EAST
0.240***
0.276***
0.240*
0.276**
(0.021)
(0.020)
(0.120)
(0.126)
LnRegTech
0.080**(0.037)
0.333**(0.159)
Constant
4.862***
−8.811
4.862***
−8.811
−5.050
−53.440
(0.014)
(27.265)
(0.084)
(37.982)
(19.024)
(57.256)
Controls
No
Yes
No
Yes
Yes
Yes
Observations
439
439
439
439
274
285
R-squared
0.456
0.492
0.492
0.491
0.731
0.503
Bankfixedeffect
Yes
Yes
Yes
Yes
Yes
Yes
Yearfixedeffects
Yes
Yes
Yes
Yes
Yes
Yes
Clusteredstandarderror
Type
Type
Province
Province
Bank
Bank
***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.EASTrepresentsthepromotionofExaminationandAnalysisSystemTechnology.
EASTisassignedto
1ifthecorre,spondingbankhasbeenincludedintheEA、STand0otherwise.LnLCRindicatesthenaturallogarithmoftheliquiditycoverage
ratio,computedas
LnLCR=ln100×.
2SeeadditionalchanneltestsundertheendogeneityconcerninAppendixD.
APPLIEDECONOMICSLETTERS四5
Table5.Resultsofchanneltestandcross-sectionalanalysis.
(1)
C
(2)
(3)
t
(4)
(5)
(6)
hanneltes
Compliance
Regulation
Technologicalfoundation
VARIABLES
LnAAP
LnAAP
LnAAP
LnLDR
LnLDR
LnLDR
LnRegTech
−0.570***
−0.570**
−0.570***
(0.188)
(0.166)
(0.126)
LnCom
0.366**(0.151)
LnReg
0.216(0.129)
LnTech
0.341***(0.114)
Constant
−185.426*
−185.426
−185.426
−52.531
−31.332
−38.993
(106.822)
(106.790)
(124.584)
(55.182)
(49.070)
(52.205)
Controls
Yes
Yes
Yes
Yes
Yes
Yes
Observations
326
326
326
326
326
326
R-squared
0.781
0.781
0.781
0.510
0.503
0.509
Bankfixedeffect
Yes
Yes
Yes
Yes
Yes
Yes
Yearfixedeffects
Yes
Yes
Yes
Yes
Yes
Yes
Clusteredstandarderror
Bank
Type
Province
Bank
Bank
Bank
***,**,and*denotesignificanceatthe1%level,5%,and10%levels,respectively.Bank-andyear-fixedeffectsareconsidered.Typedenotesthetypeofbank.Provinceimpliestheprovincewheretheheadquartersofthebankislocated.ThecolumnsofCompliance,Regulation,andTechnologicalfoundationrepresenttheresultscorrespondingtothecasesemployingthethreeapplication-scenario-relatedsubindices(i.e.complianceapplication,regulatoryapplication,andtechnologicalfoundationasthecorevariable.ThethreeRegTechsubindicesaremeasuredbythenaturallogarithmofthekeywordfrequencies,denotedasLnCom,LnReg,andLnTech,respectively.
Alternativesampleperiod
TheChineseA-sharemarketexperiencedahistoricfallinJune2015.Thehugemarketfluctuationmayspillovertothebankingsectorandleadtoaliquiditycrisis.We,therefore,removetheperiodoftheextra-ordinaryfall(i.e.theyear2015)andshowtheresultsinColumn(6)of
Table4
.ThesignificantlypositivecoefficientofinternalRegTechagainconfirmstherobustnessofourresults.
Potentialchannels
ThenexusbetweeninternalandexternalRegTechsuggeststhattheformercanboosttheautomaticandtimelyregulationofbanks’behaviours,contri-butingtoenhancedregulatorycapability.Thetigh-tenedregulationandsanctionsmayfurtherdisciplinebanks’risk-taking(Gaoetal.
2020
).
Tovalidateourconjecture,weexaminethe
effectsofinternalRegTechonregulatorycapabil-
ity,proxiedbythenaturallogarithmofadminis-
trativepenalty(LnAAP)inColumns(1)-(3)in
Table5
.TheresultssuggestthatinternalRegTech
significantlydecreasesLnAAPatthe5%level,and
thecoefficientsare−0.570forallcolumns.
2
ApossiblereasonisthatinternalRegTechcan
helptheregulatorsaccuratelyidentifybanks’mis-
conductanddeterbanks’riskybehaviours.
Cross-sectionalanalysis
InternalRegTechmayplaydiverserolesandimpactsindifferentapplicationscenarioswithinthebankingindustry.WefurtherseparatetheinternalRegTechindexintothreesubindicesbasedontheapplicationscenarios:complianceapplication,regulatoryapplication,andtechnolo-gicalfoundation.Columns(4)to(6)in
Table5
displaytheresultsforRegTechsubindices,reveal-ingthatthecomplianceandtechnologicalfounda-tionaremoreprofoundinaffectingbanks’liquidityrisk.Apossibleexplanationistheirrelativelymatureandwidespreadapplicationscomparedtosupervisionusage.
IV.Conclusions
Inthispaper,weexplorethecausaleffectofinternalRegTechonbankliquidityrisk.BasedonadatasetofChineselistedbanksfrom2015to2022,werevealasignificantmitigationeffectofinternalRegTechonbankliquidityrisk.Thefindingremainsrobustafteralleviatingtheendogeneityissueandunderalternativeproxyofthedependentvariableanddifferentsampleperiods.ApossiblechannelisthatinternalRegTechbooststheregulatorycapabilityandmitigatesbanks’riskybehaviours.The
6四Y.XIAETAL.
complianceandtechnologicalfoundationssub-indicesaremoreprofoundinaffectingbankliquidityrisk.
Ourresearchoffersvaluableimplicationsforbanksandfinancialregulators.Forbanks,investmentininternalRegTechshouldbeencouragedtolowercompliancecostsandimproveliquidityriskmanagement.Furtherexplorationsonsupervisionusageareexpected.Fromaregulatorystandpoint,advancedtech-nologiescanbeincorporatedintoregulatorypracticetoenforcepenetratingsupervisionandbridgetheregulatorygap.Theenhancedexter-nalregulatorycapabilitycanboostinternalRegTech’seffectonbanks’liquidityriskcontrol.Ourresearchstillsuffersfromsomelimitations.
First,weconsideronlythelistedbanksduetodataavailability.Second,morechannelswithinthenexusbetweenRegTechandbankliquidityriskwarrantfurtherinvestigations.
Disclosurestatement
Nopotentialconflictofinterestwasreportedbytheauthor(s).
Funding
ThisworkwassupportedbytheNationalNaturalScienceFoundationofChina[72103082]andtheNationalTrainingProgramofInnovationandEntrepreneurshipforUndergraduates[202310320016Z].
References
Abdul-Rahman,A.,A.A.Sulaiman,andN.L.H.MohdSaid.
2018
.“DoesFinancingStructureAffectsBankLiquidityRisk?”Pacific-BasinFinanceJournal52:26–39.
https://doi.
org/10.1016/j.pacfin.2017.04.004
.
Borusyak,K.,andP.Hull.
2023
.“NonrandomExposuretoExogenousShocks.”Ec
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 心理健康家长心得体会400字
- 2024年紧致焕颜凝脂项目可行性研究报告
- 2024年猪加工成套设备项目可行性研究报告
- 2025年度房屋抵押贷款全程监管委托合同3篇
- 2024年正畸钳项目可行性研究报告
- 委托加工保密协议合同
- 小升初面试自我介绍合集15篇
- 常州市解除劳动合同证明
- 2025版养老产业合伙开店服务合同3篇
- 小学生教师节演讲稿集合15篇
- 窗帘采购投标方案(技术标)
- 职业学校消防安全课件
- 基于多元回归的计量经济学论文
- 数字媒体专业发展规划
- 项目风险预测与防范事故应急预案
- 15D502等电位连接安装图集
- DB44-T 1641-2015 LED 洗墙灯地方标准
- 网络攻防试题集合
- Cpk 计算标准模板
- 静脉留置针的日常维护
- 2023年消费者咨询业务试题及答案
评论
0/150
提交评论