版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题01平行线中的拐点模型之猪蹄模型(M型)与锯齿模型平行线中的拐点模型在初中数学几何模块中属于基础工具类问题,也是学生必须掌握的一块内容,熟悉这些模型可以快速得到角的关系,求出所需的角。本专题就平行线中的拐点模型(猪蹄模型(M型)与锯齿模型)进行梳理及对应试题分析,方便掌握。拐点(平行线)模型的核心是一组平行线与一个点,然后把点与两条线分别连起来,就构成了拐点模型,这个点叫做拐点,两条线的夹角叫做拐角。通用解法:见拐点作平行线;基本思路:和差拆分与等角转化。模型1:猪蹄模型(M型)与锯齿模型【模型解读】图1图2图3如图1,①已知:AM∥BN,结论:∠APB=∠A+∠B;②已知:∠APB=∠A+∠B,结论:AM∥BN.如图2,已知:AM∥BN,结论:∠P1+∠P3=∠A+∠B+∠P2.如图3,已知:AM∥BN,结论:∠P1+∠P3+...+∠P2n+1=∠A+∠B+∠P2+...+∠P2n.【模型证明】(1)∠APB=∠A+∠B这个结论正确,理由如下:如图1,过点P作PQ∥AM,∵PQ∥AM,AM∥BN,∴PQ∥AM∥BN,∴∠A=∠APQ,∠B=∠BPQ,∴∠A+∠B=∠APQ+∠BPQ=∠APB,即:∠APB=∠A+∠B.(2)根据(1)中结论可得,∠A+∠B+∠P2=∠P1+∠P3,故答案为:∠A+∠B+∠P2=∠P1+∠P3,(3)由(2)的规律得,∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1故答案为:∠A+∠B+∠P2+…+P2n=∠P1+∠P3+∠P5+…+∠P2n+1例1.(2023上·湖南长沙·八年级校联考期中)如图,为等边三角形,.若,则()
A. B. C. D.例2.(2023下·河北石家庄·七年级统考期末)山上的一段观光索道如图所示,索道支撑架均为互相平行(),且每两个支撑架之间的索道均是直的,若,,则(
)
A. B. C. D.例3.(2023下·河南驻马店·七年级校考阶段练习)如图,,,则与满足(
)
A.B.C.D.例4.(2023下·广东佛山·七年级校考期中)如图,直线,分别交、于E、F两点,作、的平分线相交于点K;作、的平分线交于点;依此类推,作、的平分线相交于点,…,作、的平分线相交于点,则,.
例5.(2023下·江苏泰州·七年级校考阶段练习)如图,已知和分别平分和,若,,则的度数为(
)
A. B. C. D.例6.(2023下·浙江温州·七年级校联考期中)如图,已知,点,分别在,上,点,在两条平行线,之间,与的平分线交于点.若,,则的度数为(
).A. B. C. D.例7.(2023下·四川凉山·七年级校考阶段练习)如图,,则.例8.(2023·浙江七年级期中)如图(1)所示是一根木尺折断后的情形,你可能注意过,木尺折断后的断口一般是参差不齐的,那么请你深入考虑一下其中所包含的一类数学问题,我们不妨取名叫“木尺断口问题”.(1)如图(2)所示,已知,请问,,有何关系并说明理由;(2)如图(3)所示,已知,请问,,又有何关系并说明理由;(3)如图(4)所示,已知,请问与有何关系并说明理由.例9.(2023下·陕西渭南·七年级统考期中)已知点在直线,之间,且.
(1)如图1,过点作直线,求证:;(2)若平分,.①如图2,平分,过点作,若,求的度数;②如图3,过点作,若平分,试判断与的数量关系并说明理由.课后专项训练1.(2023·陕西西安·校考二模)如图,已知直线,与直线c分别交于A、B两点,点C在直线b上,点D在线段上,连接,若,则的度数为()
A. B. C. D.2.(2023上·湖北孝感·八年级统考期中)如图,,,,则的大小为(
)
A. B. C. D.3.(2023·湖南·中考真题)如图,已知AB∥DE,∠1=30°,∠2=35°,则∠BCE的度数为()A.70° B.65° C.35° D.5°4.(2023下·吉林·七年级统考期末)如图所示,直线,的直角顶点A落在直线a上,点B落在直线b上,若,,则的度数为(
)
A. B. C. D.5.(2023·河南信阳·校考三模)已知,如图,一个含30°角的直角三角尺放在两条平行线间,已知,,,则(
)
A. B. C. D.6.(2023·哈尔滨·七年级校考阶段练习)如图,,平分,则等于(
)A. B. C. D.7.(2023下·湖北襄阳·七年级统考期末)如图,,点A为射线CF上一点,,,则的度数为.
8.(2023下·河北衡水·九年级校考期中)如图,已知,,当β增大时,(填“增大”或“减小”)度.9.(2023下·辽宁抚顺·七年级校联考阶段练习)如图,A地与B地,B地与C地之间均有一条笔直的公路连接,B地分别在A地的南偏东的方向,在C地的南偏西的方向,若公路长,公路长,则A地到公路的距离是.
10.(2023下·四川南充·七年级校考期末)如图,,,则.
11.(2023下·重庆·七年级统考期末)如图,直线,点E在直线上,点H在直线上,点F在直线之间,连接,.则的度数为度.
12.(2023下·河北邯郸·七年级统考期中)如图,直线,,,,则°.
13.(2023上·福建福州·八年级福州日升中学校考阶段练习)如图,直线、分别经过等边三角形的顶点、,且,,则.
13.(2023下·贵州黔东南·七年级校考阶段练习)如图,直线,、分别是、的平分线,那么与之间的关系是.
14.(2023上·黑龙江哈尔滨·七年级校考阶段练习)如图,,,,,,.15.(2023上·黑龙江哈尔滨·七年级校考阶段练习)如图,直线平分,交于点,过点作平分交于,若,则度.
16.(2023下·四川德阳·七年级校考阶段练习)如图,,平分,,下列结论:①;②;③;④若,则,其中结论正确的是(填序号)17.(2023下·贵州黔东南·七年级校考阶段练习)填空,并在后面的括号中填理由:如图,已知,求证:.
证明:如图,过点C作∴______(
),∵,即∴______∴____________(
)又∵(
)∴____________(
)18.(2023下·福建南平·七年级统考期末)如图,,直线与分别交于M,N,平分,平分.(1)当时,求的大小;(2)设,用含α的式子表示.
19.(2023上·绵阳市·八年级专题练习)如图1,已知,点B为平面内一点,过点B作于点D,于B.(1)若,则______;(2)求证:;(3)如图2,G在射线上,当平分时,求与的数量关系.
20.(2023下·广东湛江·七年级校考期中)已知直角三角形.
(1)如图1,直线,且平分,求的度数.(用含x的式子表示)(2)在(1)的条件下,直线平分交直线于点D,如图2,在x取不同数值时,的大小是否发生变化?若不变,求其值;若变化,请求出变化的范围.21.(2023下·广东河源·七年级统考期末)如图,已知,点,分别在,上,点在,之间,,,三点均在直线的同侧.(1)如图,试说明;(2)如图,若,,分别平分和,求的度数;(3)如图,若的度数为,平分交的延长线于点,平分交的延长线于点,请用含的代数式表示.
22.(2023下·陕西安康·七年级校考期末)问题提出(1)如图1,,直接写出,,之间的关系:________.(2)如图2,,平分,平分,试探究,之间的关系,并说明理由.问题解决(3)如图3,,,,,,求的度数.
23.(2023下·北京西城·七年级北京师大附中校考阶段练习)请阅读小明同学在学习平行线这章知识点时的一段笔记,然后解决问题.小明:老师说在解决有关平行线的问题时,如果无法直接得到角的关系,就需要借助辅助线来帮助解答,今天老师介绍了一个“美味”的模型“猪蹄模型”.即已知:如图1,,E为AB、CD之间一点,连接AE,CE得到.求证:小明笔记上写出的证明过程如下:证明:过点E作∵∵,∴∴∴∴请你利用“猪蹄模型”得到的结论或解题方法,完成下面的两个问题.(1)如图,若,,求;(2)如图,,BE平分,CF平分,,求.24.(2023下·湖北鄂州·七年级统考期中)如图1,直线ABCD,点P在两平行线之间,点E在AB上,点F在CD上,连接PE,PF.(1)若∠PEB=60°,∠PFD=50°,请求出∠EPF.(请写出必要的步骤,并说明理由)(2)如图2,若点P,Q在直线AB与CD之间时,∠1=30°,∠2=40°,∠3=70°,请求出∠4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 交通事故赔偿金协议书七篇
- 鲍恩病病因介绍
- 劳务派遣书面协议书七篇
- 《数据资产入表合规规范指南》(征求意见稿)
- (参考)雕刻工艺品投资项目可行性研究报告
- 2023年天津市南开区高考语文二模试卷
- 《廉政公署专题》课件
- 电工培训课件之跌落熔丝的操作
- 《广告创意文案设计》课件
- 内蒙古呼伦贝尔市阿荣旗2023-2024学年七年级上学期期末考试数学试卷(含答案)
- 人教版(2024)数学七年级上册期末测试卷(含答案)
- 2024-2030年中国建筑设计产业应用现状与发展研究分析报告
- 大部分分校:地域文化形考任务三-国开(CQ)-国开期末复习资料
- 《大学生工匠精神及培养研究》
- 2024年全新初二生物上册期末试卷及答案(人教版)
- 大学生心理健康与发展学习通超星期末考试答案章节答案2024年
- GB/T 10433-2024紧固件电弧螺柱焊用螺柱和瓷环
- 《人工智能基础》课件-AI的前世今生:她从哪里来
- 西方经济学考试题库(含参考答案)
- 2024年国家开放大学电大财务管理考题库及答案
- 即兴配奏与弹唱智慧树知到期末考试答案章节答案2024年成都师范学院
评论
0/150
提交评论