2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题含解析_第1页
2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题含解析_第2页
2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题含解析_第3页
2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题含解析_第4页
2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省盐城市大冈初中高二数学第一学期期末教学质量检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.黄金矩形是宽()与长()的比值为黄金分割比的矩形,如图所示,把黄金矩形分割成一个正方形和一个黄金矩形,再把矩形分割出正方形.在矩形内任取一点,则该点取自正方形内的概率是A. B.C. D.2.椭圆的短轴长为()A.8 B.2C.4 D.3.已知圆的半径为,平面上一定点到圆心的距离,是圆上任意一点.线段的垂直平分线和直线相交于点,设点在圆上运动时,点的轨迹为,当时,轨迹对应曲线的离心率取值范围为()A. B.C. D.4.“不到长城非好汉,屈指行程二万”,出自毛主席1935年10月所写的一首词《清平乐·六盘山》,反映了中华民族的一种精神气魄,一种积极向上的奋斗精神.从数学逻辑角度分析,其中“好汉”是“到长城”的()A.充分条件 B.必要条件C.充要条件 D.既不充分也不必要条件5.已知等比数列满足,,则()A.21 B.42C.63 D.846.设、分别为具有公共焦点与的椭圆和双曲线的离心率,为两曲线的一个公共点,且满足,则的值为()A. B.C. D.7.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.8.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.9.记为等差数列的前项和.若,,则的公差为()A.1 B.2C.4 D.810.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.11.如图,D是正方体的一个“直角尖”O-ABC(OA,OB,OC两两垂直且相等)棱OB的中点,P是BC中点,Q是AD上的一个动点,连PQ,则当AC与PQ所成角为最小时,()A. B.C. D.212.数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线.已知的顶点,,若其欧拉线的方程为,则顶点的坐标为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知满足约束条件,则的最小值为___________14.若两平行直线3x-2y-1=0,6x+ay+c=0之间的距离为,则的值为________15.在锐角中,角A,B,C的对边分别为a,b,c.若,,,则的面积为_________16.的展开式中所有项的系数和为_________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面平面,底面是菱形,E为的中点(1)证明:(2)已知,求二面角的余弦值18.(12分)某企业2021年年初有资金5千万元,由于引进了先进生产设备,资金年平均增长率可达到.每年年底扣除下一年的消费基金1.5千万元后,剩余资金投入再生产.设从2021年的年底起,每年年底企业扣除消费基金后的剩余资金依次为,,,…(1)写出,,,并证明数列是等比数列;(2)至少到哪一年的年底,企业的剩余资金会超过21千万元?(lg19.(12分)等差数列中,首项,且成等比数列(1)求数列的通项公式;(2)求数列的前项和20.(12分)如图,在半径为6m的圆形O为圆心铝皮上截取一块矩形材料OABC,其中点B在圆弧上,点A,C在两半径上,现将此矩形铝皮OABC卷成一个以AB为母线的圆柱形罐子的侧面不计剪裁和拼接损耗,设矩形的边长|AB|xm,圆柱的体积为Vm3.(1)写出体积V关于x的函数关系式,并指出定义域;(2)当x为何值时,才能使做出的圆柱形罐子的体积V最大最大体积是多少?21.(12分)(1)已知集合,.:,:,并且是的充分条件,求实数的取值范围(2)已知:,,:,,若为假命题,求实数的取值范围22.(10分)已知公差不为0的等差数列,前项和为,首项为,且成等比数列.(1)求和;(2)设,记,求.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设矩形的长,宽分别为,所以,把黄金矩形分割成一个正方形和一个黄金矩形,所以,设矩形的面积为,正方形的面积为,设在矩形内任取一点,则该点取自正方形内的概率是,则,故本题选C.【详解】本题考查了几何概型,考查了运算能力.2、C【解析】根据椭圆的标准方程求出,进而得出短轴长.【详解】由,可得,所以短轴长为.故选:C.3、D【解析】分点A在圆内,圆外两种情况,根据中垂线的性质,结合椭圆、双曲线的定义可判断轨迹,再由离心率计算即可求解.【详解】当A在圆内时,如图,,所以的轨迹是以O,A为焦点的椭圆,其中,,此时,,.当A在圆外时,如图,因为,所以轨迹是以O,A为焦点的双曲线,其中,,此时,,.综上可知,.故选:D4、A【解析】根据充分条件和必要条件的定义进行判断即可【详解】解:设为不到长城,推出非好汉,即,则,即好汉到长城,故“好汉”是“到长城”的充分条件,故选:A5、D【解析】设等比数列公比为q,根据给定条件求出即可计算作答.【详解】等比数列公比为q,由得:,即,而,解得,所以.故选:D6、A【解析】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,利用椭圆和双曲线的定义可得出,再利用勾股定理可求得结果.【详解】设椭圆的长半轴长为,双曲线的实半轴长为,不妨设,由椭圆和双曲线的定义可得,所以,,设,因为,则,由勾股定理得,即,整理得,故.故选:A.7、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A8、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.9、C【解析】根据等差数列的通项公式及前项和公式利用条件,列出关于与的方程组,通过解方程组求数列的公差.【详解】设等差数列的公差为,则,,联立,解得.故选:C.10、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.11、C【解析】根据题意,建立空间直角坐标系,求得AC与PQ夹角的余弦值关于点坐标的函数关系,求得角度最小时点的坐标,即可代值计算求解结果.【详解】根据题意,两两垂直,故以为坐标原点,建立空间直角坐标系如下所示:设,则,不妨设点的坐标为,则,,则,又,设直线所成角为,则,则,令,令,则,令,则,此时.故当时,取得最大值,此时最小,点,则,故,则故选:C.12、A【解析】设,计算出重心坐标后代入欧拉方程,再求出外心坐标,根据外心的性质列出关于的方程,最后联立解方程即可.【详解】设,由重心坐标公式得,三角形的重心为,,代入欧拉线方程得:,整理得:①的中点为,,的中垂线方程为,即联立,解得的外心为则,整理得:②联立①②得:,或,当,时,重合,舍去顶点的坐标是故选:A【点睛】关键点睛:解决本题的关键一是求出外心,二是根据外心的性质列方程.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据题意,作出可行域,进而根据几何意义求解即可.【详解】解:作出可行域如图,将变形为,所以根据几何意义,当直线过点时,有最小值,所以联立方程得,所以的最小值为故答案为:14、±1【解析】由题意得=≠,∴a=-4且c≠-2,则6x+ay+c=0可化为3x-2y+=0,由两平行线间的距离公式,得=,解得c=2或c=-6,∴=±115、【解析】根据求出,由向量数量积得到,使用余弦定理得到方程组,求出,利用面积公式求出结果.【详解】因为,所以,即,而因为是锐角三角形,所以,所以,所以,因为,所以,即,因为,所以,整理得:①,其中,即,因为,所以,即,解得:②,把②代入①得:,解得:,则的面积为.故答案为:16、##0.015625【解析】赋值法求解二项式展开式中所有项的系数和.【详解】令得:,即为展开式中所有项的系数和.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解析】(1)利用垂直关系,转化为证明线面垂直,即可证明线线垂直;(2)利用垂直关系,建立空间直角坐标系,分别求平面和平面的法向量,利用公式,即可求解二面角的余弦值.【小问1详解】如图,取的中点,连结,,,因为,所以,因为平面平面,平面平面,所以平面,且平面,所以,又因为底面时菱形,所以,又因为点分别为的中点,所以,所以,且,所以平面,又因为平面,所以;【小问2详解】由(1)可知,平面,连结,因为,,点为的中点,所以,则两两垂直,以点为坐标原点,建立空间直角坐标系,如图所示:则,,,所以,,,,,,所以,,,设平面的法向量为,则,令,则,,故,设平面的法向量为,所以,因为二面角为锐二面角,所以二面角的余弦值为.18、(1),,,证明见解析(2)至少到2026年的年底,企业的剩余资金会超过21千万元【解析】(1)由题意可知,,,,再结合等比数列的性质,即可求解(2)由(1)知,,则,令,再结合对数函数运算,即可求解【小问1详解】依题意知,,,,,所以,又,所以是首项为3,公比为1.5的等比数列.【小问2详解】由(1)知,,所以令,解得,所以,所以至少到2026年的年底,企业的剩余资金会超过21千万元19、(1)(2)【解析】(1)根据等比中项的性质结合等差数列的通项公式求出,进而得出数列的通项公式;(2)根据裂项相消求和法得出前项和为和.【小问1详解】因为成等比数列,所以即,解得,所以;【小问2详解】因为,,,20、(1),;(2)时,最大值为m3.【解析】(1)连接,在中,由,利用勾股定理可得,设圆柱底面半径为,求出.利用(其中即可得出;(2)利用导数,求出V的单调性,即可得出结论【小问1详解】连接,在中,,,设圆柱底面半径为,则,即,,其中【小问2详解】由及,得,列表如下:,0↗极大值↘∴当时,有极大值,也是最大值为m321、(1);(2)【解析】(1)由二次函数的性质,求得,又由,求得集合,根据命题是命题的充分条件,所以,列出不等式,即可求解(2)依题意知,均为假命题,分别求得实数的取值范围,即可求解【详解】(1)由,∵,∴,,∴,所以集合,由,得,所以集合,因为命题是命题的充分条件,所以,则,解得或,∴实数的取值范围是.(2)依题意知,,均为假命题,当是假命题时,恒成立,则有,当是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论