四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题含解析_第1页
四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题含解析_第2页
四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题含解析_第3页
四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题含解析_第4页
四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川省成都市经开区实验中学2025届高二上数学期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数为的导函数,令,则下列关系正确的是()A. B.C. D.2.已知直线与平行,则a的值为()A.1 B.﹣2C. D.1或﹣23.已知点,,若直线过点且与线段相交,则直线的斜率的取值范围是()A. B.C. D.4.若复数z满足(其中为虚数单位),则()A. B.C. D.5.若,则下列不等式不能成立是()A. B.C. D.6.已知数列满足,则()A.32 B.C.1320 D.7.抛掷两枚质地均匀的硬币,设事件“第一枚硬币正面朝上”,事件“第二枚硬币反面朝上”,则下列结论中正确的为()A.与互为对立事件 B.与互斥C.与相等 D.8.已知梯形中,,且,则的值为()A. B.C. D.9.已知f(x)为R上的可导函数,其导函数为,且对于任意的x∈R,均有,则()A.e-2021f(-2021)>f(0),e2021f(2021)<f(0) B.e-2021f(-2021)<f(0),e2021f(2021)<f(0)C.e-2021f(-2021)>f(0),e2021f(2021)>f(0) D.e-2021f(-2021)<f(0),e2021f(2021)>f(0)10.已知点与不重合的点A,B共线,若以A,B为圆心,2为半径的两圆均过点,则的取值范围为()A. B.C. D.11.过点A(3,3)且垂直于直线的直线方程为A. B.C. D.12.等差数列中,,,则()A.6 B.7C.8 D.9二、填空题:本题共4小题,每小题5分,共20分。13.已知点P在圆上,已知,,则的最小值为___________.14.若把英语单词“”的字母顺序写错了,则可能出现的错误有______种15.若抛物线的焦点与椭圆的右焦点重合,则实数m的值为______.16.已知圆锥的高为,体积为,则以该圆锥的母线为半径的球的表面积为______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)等差数列的公差d不为0,满足成等比数列,数列满足.(1)求数列与通项公式:(2)若,求数列的前n项和.18.(12分)已知圆C的圆心C在直线上,且与直线相切于点.(1)求圆C的方程;(2)过点的直线与圆C交于两点,线段的中点为M,直线与直线的交点为N.判断是否为定值.若是,求出这个定值,若不是,说明理由.19.(12分)已知三角形ABC的内角A,B,C的对边分别为a,b,c,且(1)求角B;(2)若,角B的角平分线交AC于点D,,求CD的长20.(12分)如图,已知正方体的棱长为,,分别是棱与的中点.(1)求以,,,为顶点的四面体的体积;(2)求异面直线和所成角的大小.21.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值22.(10分)如图,在平面直角坐标系上,已知圆的直径,定直线到圆心的距离为,且直线垂直于直线,点是圆上异于、的任意一点,直线、分别交与、两点(1)求过点且与圆相切的直线方程;(2)若,求以为直径的圆方程;(3)当点变化时,以为直径的圆是否过圆内的一定点,若过定点,请求出定点;若不过定点,请说明理由

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】求导后,令,可求得,再利用导数可得为减函数,比较的大小后,根据为减函数可得答案.【详解】由题意得,,,解得,所以所以,所以为减函数因为,所以,故选:B【点睛】关键点点睛:比较大小的关键是知道的单调性,利用导数可得的单调性.2、A【解析】根据题意可得,解之即可得解.【详解】解:因为直线与平行,所以,解得.故选:A.3、B【解析】直接利用两点间的坐标公式和直线的斜率的关系求出结果【详解】解:直线过点且斜率为,与连接两点,的线段有公共点,由图,可知,,当时,直线与线段有交点故选:B4、B【解析】利用复数的除法化简复数,利用复数的模长公式可求得结果.【详解】,因此,.故选:B5、C【解析】利用不等式的性质可判断ABD,利用赋值法即可判断C,如.【详解】解:因为,所以,所以,,,故ABD正确;对于C,若,则,故C错误.故选:C.6、A【解析】先令,求出,再当时,由,可得,然后两式相比,求出,从而可求出,进而可求得答案【详解】当时,,当时,由,可得,两式相除可得,所以,所以,故选:A7、D【解析】利用互斥事件和对立事件的定义分析判断即可【详解】因为抛掷两枚质地均匀的硬币包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币正面朝上,第一枚硬币反面朝上第二枚硬币反面朝上,4种情况,其中事件包含第一枚硬币正面朝上第二枚硬币正面朝上,第一枚硬币正面朝上第二枚硬币反面朝上2种情况,事件包含第一枚硬币正面朝上第二枚硬币反面朝上,第一枚硬币反面朝上第二枚硬币反面朝上2种情况,所以与不互斥,也不对立,也不相等,,所以ABC错误,D正确,故选:D8、D【解析】根据共线定理、平面向量的加法和减法法则,即可求得,进而求出的值,即可求出结果.【详解】因为,所以又,所以.故选:D.9、D【解析】通过构造函数法,结合导数确定正确答案.【详解】构造函数,所以在上递增,所以,即.故选:D10、D【解析】由题意可得两点的坐标满足圆,然后由圆的性质可得当时,弦长最小,当过点时,弦长最长,再根据向量数量积的运算律求解即可【详解】设点,则以A,B为圆心,2为半径的两圆方程分别为和,因为两圆过,所以和,所以两点的坐标满足圆,因为点与不重合的点A,B共线,所以为圆的一条弦,所以当弦长最小时,,因为,半径为2,所以弦长的最小值为,当过点时,弦长最长为4,因为,所以当弦长最小时,的最大值为,当弦长最大时,的最小值为,所以的取值范围为,故选:D11、D【解析】过点A(3,3)且垂直于直线的直线斜率为,代入过的点得到.故答案为D.12、C【解析】由等差数列的基本量法先求得公差,然后可得【详解】设数列的公差为,则,,所以故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】推导出极化恒等式,即,结合最小值为,求出最小值.【详解】由题意,取线段AB中点,则,,两式分别平方得:①,②,①-②得:,因为圆心到距离为,所以最小值为,又,故最小值为:.故答案为:14、23【解析】先计算该单词所有字母能够组成的所有排列情况,然后减去正确的,即是可能出现错误的情况.【详解】因为“”四个字母组成的全排列共有(种)结果,其中只有排列“”是正确的,其余全是错误的,故可能出现错误的共有(种).故答案为:23.15、【解析】分别求出椭圆和抛物线的焦点坐标即可出值.【详解】由椭圆方程可知,,,则,即椭圆的右焦点的坐标为,抛物线的焦点坐标为,∵抛物线的焦点与椭圆的右焦点重合,∴,即,故答案为:.16、【解析】利用圆锥体积公式可求得圆锥底面半径,利用勾股定理可得母线长;根据球的表面积公式可求得结果.【详解】设圆锥的底面半径为,母线长为,圆锥体积,,,以为半径的球的表面积.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)【解析】(1)根据等比中项的性质及等差数列的通项公式得到方程求出公差,即可求出的通项公式,由,当时,求出,当时,两式作差,即可求出;(2)由(1)可得,利用错位相减法求和即可;【小问1详解】解:由已知,又,所以故解得(舍去)或∴∵①故当时,可知,∴,当时,可知②①②得∴又也满足,故当时,都有;【小问2详解】解:由(1)知,故③,∴④,由③④得整理得.18、(1)(2)【解析】(1)设过点且与直线垂直的直线为,将代入直线方程,即可求出,再与求交点坐标,得到圆心坐标,再求出半径,即可得解;(2)分直线的斜率存在与不存在两种情况讨论,当斜率不存在直接求出、的坐标,即可求出,当直线的斜率存在,设直线为、、,联立直线与圆的方程,消元列出韦达定理,即可表示出的坐标,再求出的坐标,即可表示出、,即可得解;【小问1详解】解:设过点且与直线垂直的直线为,则,解得,即,由,解得,即圆心坐标为,所以半径,所以圆的方程为【小问2详解】解:当直线的斜率存在时,设过点的直线为,所以,消去得,设、,则,,所以,所以的中点,由解得,即,所以,,所以;当直线的斜率不存在时,直线的方程为,由,解得或,即、,所以,所以又解得,即,所以,所以,综上可得.19、(1)(2)【解析】(1)根据正弦定理边角互化得,进而得;(2)根据题意得,进而在中,由余弦定理即可得答案.【小问1详解】解:因为,所以由正弦定理可得,所以,即,因为,所以,故,因为,所以【小问2详解】解:由(1)可知,又;所以,,,所以,在,由余弦定理可得,即,解得20、(1)(2)【解析】(1)由题意可知该四面体为以为底面,以为高的四面体,可得四面体体积;(2)连接,,可得即为异面直线和所成的角的平面角,根据余弦定理可得角的大小.【小问1详解】解:连接,,,以,,,为顶点的四面体即为三棱锥,底面的面积,高,则其体积;【小问2详解】解:连接,,,则即为异面直线和所成的角的平面角,在中,,,,则,故,即和所成的角的的大小为.21、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值22、(1)或(2)(3)过定点,定点坐标为【解析】(1)对所求直线的斜率是否存在进行分类讨论,在所求直线斜率不存在时,直接验证直线与圆相切;在所求直线斜率存在时,设所求直线方程为,利用点到直线的距离公式可得出关于的等式,求出的值,综合可得出所求直线的方程;(2)分点在轴上方、点在轴下方两种情况讨论,求出点、的坐标,可得出所求圆的圆心坐标和半径,即可得出所求圆的方程;(3)设直线的方程为,其中,求出点、的坐标,可求得以线段为直径的圆的方程,并化简圆的方程,可求得定点的坐标.【小问1详解】解:易知圆的方程为,圆心为原点,半径为,若所求直线的斜率不存在,则所求直线的方程为,此时直线与圆相切,合乎题意,若所求直线的斜率存在,设所求直线的方程为,即,由已知可得,解得,此时所求直线的方程为.综上所述,过点且与圆相切的直线方程为或.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论