版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届福建省泉州实验中学高一数学第一学期期末联考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知定义域为的函数满足:,且,当时,,则等于()A B.C.2 D.42.若不等式对一切恒成立,那么实数的取值范围是A. B.C. D.3.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也可用函数的解析式来琢磨函数的图象的特征,如通过函数的解析式可判断其在区间的图象大致为()A. B.C. D.4.圆台的一个底面周长是另一个底面周长的3倍,母线长为3,圆台的侧面积为84π,则圆台较小底面的半径为()A.7 B.6C.5 D.35.集合的真子集的个数是()A. B.C. D.6.下列区间中,函数单调递增的区间是()A. B.C. D.7.已知集合A={x|-1≤x≤2},B={0,1,2,3},则A∩B=()A.{0,1} B.{-1,0,1}C.{0,1,2} D.{-1,0,1,2}8.在《九章算术》中,将底面是直角三角形的直三棱柱称为“堑堵”.如图,网格纸上小正方形的边长为,粗实线画出的是某“堑堵”的三视图,则该“堑堵”的侧面积为()A.48 B.42C.36 D.309.已知点在圆外,则直线与圆的位置关系是()A.相切 B.相交C.相离 D.不确定10.已知实数满足,则函数的零点在下列哪个区间内A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数,若a、b、c互不相等,且,则abc的取值范围是______12.函数的定义域为________13.已知,且,则的最小值为____________.14.已知函数若互不相等,且,则的取值范围是15.若,,且,则的最小值为________16.已知上的奇函数是增函数,若,则的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数为偶函数.(1)求的值;(2)若恒成立,求实数的取值范围.18.已知函数是定义在上的增函数,且.(1)求的值;(2)若,解不等式.19.如图,在三棱柱中,侧棱平面,、分别是、的中点,点在侧棱上,且,,求证:(1)直线平面;(2)平面平面.20.已知向量,.(1)若与共线且方向相反,求向量的坐标.(2)若与垂直,求向量,夹角的大小.21.已知函数.(1)判断的奇偶性;(2)判断在上的单调性,并用定义证明;(3)若关于x的方程在R上有四个不同的根,求实数t的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】根据函数的周期性以及奇偶性,结合已知函数解析式,代值计算即可.【详解】因为函数满足:,且,故是上周期为的偶函数,故,又当时,,则,故.故选:A.2、D【解析】由绝对值不等式解法,分类讨论去绝对值,再根据恒成立问题的解法即可求得a的取值范围【详解】根据绝对不等式,分类讨论去绝对值,得所以所以所以选D【点睛】本题考查了绝对值不等式化简方法,恒成立问题的基本应用,属于基础题3、A【解析】根据函数的定义域,函数的奇偶性,函数值的符号及函数的零点即可判断出选项.【详解】当时,令,得或,且时,;时,,故排除选项B.因为为偶函数,为奇函数,所以为奇函数,故排除选项C;因为时,函数无意义,故排除选项D;故选:A4、A【解析】设圆台上底面半径为,由圆台侧面积公式列出方程,求解即可得解.【详解】设圆台上底面半径为,由题意下底面半径为,母线长,所以,解得.故选:A.【点睛】本题考查了圆台侧面积公式的应用,属于基础题.5、B【解析】确定集合的元素个数,利用集合真子集个数公式可求得结果.【详解】集合的元素个数为,故集合的真子集个数为.故选:B.6、A【解析】解不等式,利用赋值法可得出结论.【详解】因为函数的单调递增区间为,对于函数,由,解得,取,可得函数的一个单调递增区间为,则,,A选项满足条件,B不满足条件;取,可得函数的一个单调递增区间为,且,,CD选项均不满足条件.故选:A.【点睛】方法点睛:求较为复杂的三角函数的单调区间时,首先化简成形式,再求的单调区间,只需把看作一个整体代入的相应单调区间内即可,注意要先把化为正数7、C【解析】利用交集定义直接求解【详解】∵集合A={x|-1≤x≤2},B={0,1,2,3},∴A∩B={0,1,2}故选:C8、C【解析】由三视图可知该“堑堵”的高为,其底面是直角边为,斜边为的三角形,从而可求出其侧面积.【详解】解:由三视图易得该“堑堵”的高为,其底面是直角边为,斜边为的三角形,故其侧面积为.故选:C.9、B【解析】由题意结合点与圆的位置关系考查圆心到直线的距离与圆的半径的大小关系即可确定直线与圆的位置关系.【详解】点在圆外,,圆心到直线距离,直线与圆相交.故选B.【点睛】本题主要考查点与圆的位置关系,直线与圆的位置关系等知识,意在考查学生的转化能力和计算求解能力.10、B【解析】由3a=5可得a值,分析函数为增函数,依次分析f(﹣2)、f(﹣1)、f(0)的值,由函数零点存在性定理得答案【详解】根据题意,实数a满足3a=5,则a=log35>1,则函数为增函数,且f(﹣2)=(log35)﹣2+2×(﹣2)﹣log53<0,f(﹣1)=(log35)﹣1+2×(﹣1)﹣log53=﹣2<0,f(0)=(log35)0﹣log53=1﹣log53>0,由函数零点存在性可知函数f(x)的零点在区间(﹣1,0)上,故选B【点睛】本题考查函数零点存在性定理的应用,分析函数的单调性是关键二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】画出函数的图象,根据互不相等,且,我们令,我们易根据对数的运算性质,及c的取值范围得到abc的取值范围,即可求解【详解】由函数函数,可得函数的图象,如图所示:若a,b,c互不相等,且,令,则,,故,故答案为【点睛】本题主要考查了对数函数图象与性质的综合应用,其中画出函数图象,利用图象的直观性,数形结合进行解答是解决此类问题的关键,着重考查了数形结合思想,以及分析问题和解答问题的能力,属于中档试题12、【解析】根据偶次方根被开方数为非负数、对数真数大于零列不等式组,解不等式组求得函数的定义域.【详解】依题意,解得,故函数的定义域为.故答案为.【点睛】本小题主要考查具体函数定义域的求法,属于基础题.13、##2.5【解析】将变形为,利用基本不等式求得答案.【详解】由题意得:,当且仅当时取得等号,故答案为:14、(10,12)【解析】不妨设a<b<c,作出f(x)的图象,如图所示:由图象可知0<a<1<b<10<c<12,由f(a)=f(b)得|lga|=|lgb|,即−lga=lgb,∴lgab=0,则ab=1,∴abc=c,∴abc的取值范围是(10,12),15、4【解析】应用基本不等式“1”的代换求最小值即可,注意等号成立的条件.【详解】由题设,知:当且仅当时等号成立.故答案为:4.16、【解析】先通过函数为奇函数将原式变形,进而根据函数为增函数求得答案.【详解】因为函数为奇函数,所以,而函数在R上为增函数,则.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据奇偶函数的定义可得,列出方程,结合对数运算公式解方程即可;(2)根据指数、对数函数的性质求出函数,进而得到,解不等式即可.【小问1详解】∵是偶函数,∴,即,∴【小问2详解】由(1)知,∴又由解得,∴当且仅当x=0时等号成立,∴∴又∵恒成立,∴∴m≤-1或m≥318、(1)0(2)【解析】(1)直接利用赋值法,令即可得结果;(2)利用已知条件将不等式化为,结合单调性可得结果.【小问1详解】令则有.【小问2详解】∵∴,则可化为,即则,∵在上单调递增∴,解得.即不等式的解集为.19、(1)证明见解析;(2)证明见解析.【解析】(1)由中位线的性质得出,由棱柱的性质可得出,由平行线的传递性可得出,进而可证明出平面;(2)证明出平面,可得出,结合可证明出平面,再由面面垂直的判定定理即可证明出结论成立.【详解】(1)、分别为、的中点,为的中位线,,为棱柱,,,平面,平面,平面;(2)在三棱柱中,平面,平面,,又且,、平面,平面,而平面,故.又,且,、平面,平面,又平面,平面平面.【点睛】本题考查线面平行和面面垂直的证明,考查推理能力,属于中等题.20、(1);(2).【解析】(1)由已知设,.再由向量的模的表示可求得答案;(2)根据向量垂直的坐标表示可求得,再由向量的夹角运算求得答案..,.【详解】(1),且与共线且方向相反.设,.,,..(2)与垂直,,,,.,.21、(1)是偶函数(2)在上单调递增,证明见解析(3)【解析】(1)利用函数奇偶性的定义,判断的关系即可得出结论;(2)任取,利用作差法整理即可得出结论;(3)由整理得,易得的最
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 上海科创职业技术学院《广播电视新闻采访》2023-2024学年第一学期期末试卷
- 上海健康医学院《信号与系统实验》2023-2024学年第一学期期末试卷
- 上海建设管理职业技术学院《国际经济合作》2023-2024学年第一学期期末试卷
- 上海建桥学院《非常规储层地质学》2023-2024学年第一学期期末试卷
- 上海行健职业学院《税务策划》2023-2024学年第一学期期末试卷
- 上海海洋大学《人工智能与法律变革》2023-2024学年第一学期期末试卷
- 2024年中国汽动组合机市场调查研究报告
- 2024年中国改性沥青防水涂料市场调查研究报告
- 大学生职业生涯发展与就业指导试题(附参考答案)
- 七年级英语下册 Unit 5 Why do you like pandas第3课时教学实录 (新版)人教新目标版
- 《监理单位工作质量考评手册》装订版
- 走进《黄帝内经》学习通超星期末考试答案章节答案2024年
- 支气管哮喘诊治
- 5-2《巧手饰新年》教学设计
- 浙江省嘉兴市2023-2024学年高一上学期1月期末考试政治试题
- 事业单位考试大纲题库考点《人文历史》(2023年版)-1
- 软件项目开发投标文件技术方案
- 《设计质量保证措施》
- 有关于企业的调研报告范文(10篇)
- 君乐宝在线测评题答案
- 2024年秋季新人教PEP版英语三年级上册全册教案
评论
0/150
提交评论