版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江苏省扬州市邗江区公道中学数学高二上期末经典试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在中,内角的对边分别为,若,则角为A. B.C. D.2.抛物线的焦点到准线的距离是A. B.1C. D.3.抛物线y=4x2的焦点坐标是()A.(0,1) B.(1,0)C. D.4.“”是“方程是圆的方程”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.已知等差数列,,,则数列的前项和为()A. B.C. D.6.函数的最小值是()A.2 B.4C.5 D.67.已知抛物线的方程为,则此抛物线的准线方程为()A. B.C. D.8.已知等比数列的公比q为整数,且,,则()A.2 B.3C.-2 D.-39.“,”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.已知向量,,则向量等于()A.(3,1,-2) B.(3,-1,2)C.(3,-1,-2) D.(-3,-1,-2)11.下列命题正确的是()A经过三点确定一个平面B.经过一条直线和一个点确定一个平面C.四边形确定一个平面D.两两相交且不共点的三条直线确定一个平面12.设椭圆C:的左、右焦点分别为、,P是C上的点,⊥,∠=,则C的离心率为A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,E,F分别是三棱锥的棱AD,BC的中点,,,,则异面直线AB与EF所成的角为______.14.某中学高三(2)班甲,乙两名同学自高中以来每次考试成绩的茎叶图如图所示,则甲的中位数与乙的极差的和为___________.15.复数(其中i为虚数单位)的共轭复数______16.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在一次重大军事联合演习中,以点为中心的海里以内海域被设为警戒区域,任何船只不得经过该区域.已知点正北方向海里处有一个雷达观测站,某时刻测得一艘匀速直线行驶的船只位于点北偏东,且与点相距海里的位置,经过小时又测得该船已行驶到位于点北偏东,且与点相距海里的位置(1)求该船的行驶速度(单位:海里/小时);(2)该船能否不改变方向继续直线航行?请说明理由18.(12分)设抛物线的焦点为,点在抛物线上,且,椭圆右焦点也为,离心率为(1)求抛物线方程和椭圆方程;(2)若不经过的直线与抛物线交于、两点,且(为坐标原点),直线与椭圆交于、两点,求面积的最大值19.(12分)公差不为零的等差数列中,已知其前n项和为,若,且成等比数列(1)求数列的通项;(2)当时,求数列的前n和20.(12分)已知抛物线的焦点也是椭圆的一个焦点,如图,过点任作两条互相垂直的直线,,分别交抛物线于,,,四点,,分别为,的中点.(1)求的值;(2)求证:直线过定点,并求出该定点的坐标;(3)设直线交抛物线于,两点,试求的最小值.21.(12分)求函数在区间上的最大值和最小值22.(10分)在三棱柱中,侧面正方形的中心为点平面,且,点满足(1)若平面,求的值;(2)求点到平面的距离;(3)若平面与平面所成角的正弦值为,求的值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】因为,那么结合,所以cosA==,所以A=,故答案为A考点:正弦定理与余弦定理点评:本题主要考查正弦定理与余弦定理的基本应用,属于中等题.2、D【解析】,,所以抛物线的焦点到其准线的距离是,故选D.3、C【解析】将抛物线方程化为标准方程,由此可抛物线的焦点坐标得选项.【详解】解:将抛物线y=4x2的化为标准方程为x2=y,p=,开口向上,焦点在y轴的正半轴上,故焦点坐标为(0,).故选:C4、A【解析】利用充分条件和必要条件的定义判断.【详解】若方程表示圆,则,即,解得或,故“”是“方程是圆的方程”的充分不必要条件,故选:A5、A【解析】求出通项,利用裂项相消法求数列的前n项和.【详解】因为等差数列,,,所以,所以,所以数列的前项和为故B,C,D错误.故选:A.6、C【解析】结合基本不等式求得所求的最小值.【详解】,,当且仅当时等号成立.故选:C7、A【解析】由抛物线的方程直接写出其准线方程即可.【详解】由抛物线的方程为,则其准线方程为:故选:A8、A【解析】由等比数列的性质有,结合已知求出基本量,再由即可得答案.【详解】因为,,且q为整数,所以,,即q=2.所以.故选:A9、A【解析】由正切函数性质,应用定义法判断条件间充分、必要关系.【详解】当,,则,当时,,.∴“,”是“”的充分不必要条件.故选:A10、B【解析】根据空间向量线性运算的坐标表示即可得出答案.【详解】解:因为,,所以.故选:B.11、D【解析】由平面的基本性质结合公理即可判断.【详解】对于A,过不在一条直线上三点才能确定一个平面,故A不正确;对于B,经过一条直线和直线外一个点确定一个平面,故B不正确;对于C,空间四边形不能确定一个平面,故C不正确;对于D,两两相交且不共点的三条直线确定一个平面,故D正确.故选:D12、D【解析】详解】由题意可设|PF2|=m,结合条件可知|PF1|=2m,|F1F2|=m,故离心率e=选D.点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于的方程或不等式,再根据的关系消掉得到的关系式,而建立关于的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】取的中点,连结,由分别为的中点,可得(或其补角)为异面直线AB与EF所成的角,在求解即可.【详解】取的中点,连结由分别为的中点,则所以(或其补角)为异面直线AB与EF所成的角由分别是的中点,则,又在中,,则所以,又,所以在直角中,故答案为:14、111【解析】求出甲的中位数和乙的极差即得解.【详解】解:由题得甲的中位数为,乙的极差为,所以它们的和为.故答案为:11115、##【解析】根据共轭复数的概念,即可得答案.【详解】由题意可知:复数(其中i为虚数单位)的共轭复数,故答案为:16、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)海里/小时;(2)该船要改变航行方向,理由见解析.【解析】(1)设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立平面直角坐标系,计算出,即可求得该船的行驶速度;(2)求出直线的方程,计算出点到直线的距离,可得出结论.【小问1详解】解:设一个单位为海里,建立以为坐标原点,正东、正北方向分别为、轴的正方向建立如下图所示的平面直角坐标系,则坐标平面中,,且,,则、、,,所以,所以、两地的距离为海里,所以该船行驶的速度为海里/小时.【小问2详解】解:直线的斜率为,所以直线的方程为,即,所以点到直线的距离为,所以直线会与以为圆心,以个单位长为半径的圆相交,因此该船要改变航行方向,否则会进入警戒区域18、(1)抛物线方程为,椭圆方程为(2)【解析】(1)由,可得,继而可得,故,再利用离心率,以及,即得解;(2)设直线方程为,与抛物线联立,,结合韦达定理可得,再与椭圆联立,,韦达定理代入,结合均值不等式即得解【小问1详解】由题意,解得:,故,,,,,所以抛物线方程为,椭圆方程为【小问2详解】设直线方程为,由消去得,,设,,则因,所以或(舍去),所以直线方程为由,消去得,设,,则设直线与轴交点为,则所以令,则,所以,当且仅当时,即时,取最大值19、(1)(2)【解析】(1)根据等差数列的性质,结合题意,可求得值,根据成等比数列,即可求得d值,代入等差数列通项公式,即可得答案;(2)由(1)可求得,即可得表达式,根据裂项相消求和法,即可得答案.【小问1详解】设等差数列的公差为,由等差数列性质可得,解得,又成等比数列,所以,整理得,因为,所以,所以【小问2详解】由(1)可得,则,所以,所以20、(1)(2)证明见解析,(3,0)(3)【解析】(1)求出椭圆的焦点坐标,从而可知抛物线的焦点坐标,进而可得的值;(2)首先设出直线的方程,联立直线与抛物线的方程,得到,坐标,令,可得直线过点,再证明当,,,三点共线即可;(3)设出的直线方程,联立直线与抛物线的方程,利用韦达定理找出根的关系,再利用两点间的距离公式求出最小值即可.【小问1详解】椭圆的焦点坐标为,由于抛物线的焦点也是椭圆的一个焦点,故,即,;小问2详解】由(1)知,抛物线的方程为,设,,,,由题意,直线的斜率存在且设直线的方程为,代入可得,则,故,故的中点坐标为,由,设直线的方程为,代入可得,则,故,可得的中点坐标为,令得,此时,故直线过点,当时,,所以,,,三点共线,所以直线过定点.【小问3详解】设,由题意直线的斜率存在,设直线的方程为,代入可得,则,,,故,当即直线垂直轴时,取得最小值.21、,【解析】先求导函数,再根据导函数得到单调区间,比较极值和端点值,即可得到最大值和最小值.【详解】解:依题意,,令,得或,所以函数在和上单调递增,在上单调递减,又,,,所以,22、(1);(2);(3)或.【解析】(1)连接ME,证明即可计算作答.(2)以为原点,的方向分别为轴正方向建立空间直角坐标系,借助空间向量计算点到平面的距离即可.(3)由(2)中空间直角坐标系,借助空间向量求平面与平面所成角的余弦即可计算作答.【小问1详解】在三棱柱中,因,即点在上,连接ME,如图,因平面面,面面,则有,而为中点,于是得为的中点,所以.【小问2详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年专业模具供应销售协议范本一
- 2024年代收付款业务合作合同版B版
- 2024年产品市场推广及销售代理合同
- 江南大学《电力变换技术》2021-2022学年第一学期期末试卷
- 佳木斯大学《药物分析专业创新创业拓展》2021-2022学年第一学期期末试卷
- 2024供水设施建设项目井施工合同版
- 2024基础型货物承运协议模板版B版
- 佳木斯大学《离散数学》2023-2024学年第一学期期末试卷
- 暨南大学《英语听说I》2021-2022学年第一学期期末试卷
- 2024合伙人股份转让协议模板范例
- 高考倒计时 二百天大有可为-高三冲刺班会
- 大学体育与体质健康(山东联盟)智慧树知到期末考试答案章节答案2024年中国石油大学(华东)
- 期末考试-公共财政概论-章节习题
- 运动与身体教育智慧树知到期末考试答案章节答案2024年温州大学
- 家具店消防应急预案
- 新车提车验车表4页
- 浅谈区域财务一体化实施的有效方法
- 盾构穿越岩溶地区施工技术总结
- 慢性病健康管理教材
- 郑州数字经济发展现状与对策建议研究
- 中烟电子商务系统烟草物资交易平台会员管理办法
评论
0/150
提交评论