版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省眉山一中2025届高一数学第一学期期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知为第二象限角,则的值是()A.3 B.C.1 D.2.已知是减函数,则a的取值范围是()A. B.C. D.3.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)4.函数的大致图象是()A. B.C. D.5.设,,则()A. B.C. D.6.设集合,,若对于函数,其定义域为,值域为,则这个函数的图象可能是()A. B.C. D.7.已知角的顶点与坐标原点重合,始边与轴的非负半轴重合,其终边与单位圆相交于点,则()A. B.C. D.8.已知幂函数在上单调递减,则m的值为()A.0 B.1C.0或1 D.9.若角的终边经过点,则A. B.C. D.10.函数的最小正周期为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.直线被圆截得弦长的最小值为______.12.______________.13.已知,且,则的值为______14.___________.15.如图,在正方体中,、分别是、上靠近点的三等分点,则异面直线与所成角的大小是______.16.已知甲、乙、丙三人去参加某公司面试,他们被该公司录取的概率分别是,且三人录取结果相互之间没有影响,则他们三人中恰有两人被录取的概率为___________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.在①;②关于x的不等式的解集是这两个条件中任选一个,补充在下面的问题(1)中并解答,若同时选择两个条件作答,以第一个作答计分(1)已知______,求关于的不等式的解集;(2)在(1)的条件下,若非空集合,,求实数的取值范围18.直线过定点,交、正半轴于、两点,其中为坐标原点.(Ⅰ)当的倾斜角为时,斜边的中点为,求;(Ⅱ)记直线在、轴上的截距分别为,其中,求的最小值.19.设函数,将该函数的图象向左平移个单位长度后得到函数的图象,函数的图象关于y轴对称.(1)求的值,并在给定的坐标系内,用“五点法”列表并画出函数在一个周期内的图象;(2)求函数的单调递增区间;(3)设关于x的方程在区间上有两个不相等的实数根,求实数m的取值范围.20.已知正方体,分别为和上的点,且,.(1)求证:;(2)求证:三条直线交于一点.21.已知一扇形的圆心角为,所在圆的半径为.(1)若,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积?
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】由为第二象限角,可得,再结合,化简即可.【详解】由题意,,因为为第二象限角,所以,所以.故选:C.2、D【解析】利用分段函数在上单调递减的特征直接列出不等式组求解即得.【详解】因函数是定义在上的减函数,则有,解得,所以的取值范围是.故选:D3、B【解析】列不等式求解【详解】,解得故选:B4、C【解析】由奇偶性定义判断的奇偶性,结合对数、余弦函数的性质判断趋向于0时的变化趋势,应用排除法即可得正确答案.【详解】由且定义域,所以为偶函数,排除B、D.又在趋向于0时趋向负无穷,在趋向于0时趋向1,所以在趋向于0时函数值趋向负无穷,排除A.故选:C5、A【解析】由对数函数的图象和性质知,,则.又因为,根据已知可算出其取值范围,进而得到答案.【详解】解:因为,,所以,又+,所以,所以.故选:A.6、D【解析】利用函数的概念逐一判断即可.【详解】对于A,函数的定义域为,不满足题意,故A不正确;对于B,一个自变量对应多个值,不符合函数的概念,故B不正确;对于C,函数的值域为,不符合题意,故C不正确;对于D,函数的定义域为,值域为,满足题意,故D正确.故选:D【点睛】本题考查了函数的概念以及函数的定义域、值域,考查了基本知识的掌握情况,理解函数的概念是解题的关键,属于基础题.7、C【解析】由已知利用任意角的三角函数求得,再由二倍角的余弦公式求解即可【详解】解:因为角的终边与单位圆相交于点,则,故选:C8、A【解析】根据幂函数得的定义,求得或,结合幂函数的性质,即可求解.【详解】由题意,幂函数,可得,解得或,当时,可得,可得在上单调递减,符合题意;当时,可得,可得在上无单调性,不符合题意,综上可得,实数的值为.故选:A.9、C【解析】根据三角函数定义可得,判断符号即可.【详解】解:由三角函数的定义可知,符号不确定,,故选:C【点睛】任意角的三角函数值:(1)角与单位圆交点,则;(2)角终边任意一点,则.10、C【解析】根据正弦型函数周期的求法即可得到答案.【详解】故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】先求直线所过定点,根据几何关系求解【详解】,由解得所以直线过定点A(1,1),圆心C(0,0),由几何关系知当AC与直线垂直时弦长最小.弦长最小值为.故答案为:12、2【解析】由对数的运算法则直接求解.【详解】故答案为:213、【解析】根据同角的三角函数的关系,利用结合两角和的余弦公式即可求出【详解】,,,,,故答案为.【点睛】本题主要考查同角的三角函数的关系,两角和的余弦公式,属于中档题.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值,角的变换是解题的关键14、2【解析】利用换底公式及对数的性质计算可得;【详解】解:.故答案为:15、【解析】连接,可得出,证明出四边形为平行四边形,可得,可得出异面直线与所成角为或其补角,分析的形状,即可得出的大小,即可得出答案.【详解】连接、、,,,在正方体中,,,,所以,四边形为平行四边形,,所以,异面直线与所成的角为.易知为等边三角形,.故答案为:.【点睛】本题考查异面直线所成角的计算,一般利用平移直线法,选择合适的三角形求解,考查计算能力,属于中等题.16、##0.15【解析】利用相互独立事件概率乘法公式分别求出甲和乙被录取的概率、甲和丙被录取的概率、乙和丙被录取的概率,然后即可求出他们三人中恰有两人被录取的概率.【详解】因为甲、乙、丙三人被该公司录取的概率分别是,且三人录取结果相互之间没有影响,甲和乙被录取的概率为,甲和丙被录取的概率为,乙和丙被录取的概率为则他们三人中恰有两人被录取的概率为,故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)条件选择见解析,或(2)【解析】(1)若选①,分和,求得a,再利用一元二次不等式的解法求解;若选②,根据不等式的解集为,求得a,b,再利用一元二次不等式的解法求解;(2)由,得到求解;【小问1详解】解:若选①,若,解得,不符合条件若,解得,则符合条件将代入不等式并整理得,解得或,故或若选②,因为不等式的解集为,所以,解得将代入不等式整理得,解得或故或【小问2详解】∵,∴,又∵,∴或,∴或,∴18、(Ⅰ);(Ⅱ)9.【解析】(Ⅰ)首先求得直线方程与坐标轴的交点,然后求解的值即可;(Ⅱ)由题意结合截距式方程和均值不等式的结论求解的最小值即可.【详解】(Ⅰ),令令,.(Ⅱ)设,则,,当时,的最小值.【点睛】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误19、(1),图象见解析;(2)(3)【解析】(1)化简解析式,通过三角函数图象变换求得,结合关于轴对称求得,利用五点法作图即可;(2)利用整体代入法求得的单调递增区间.(3)化简方程,利用换元法,结合一元二次方程根的分布求得的取值范围.【小问1详解】.所以,将该函数的图象向左平移个单位后得到函数,则,该函数的图象关于轴对称,可知该函数为偶函数,故,,解得,.因为,所以得到.所以函数,列表:000作图如下:【小问2详解】由函数,令,,解得,,所以函数的单调递增区间为【小问3详解】由(1)得到,化简得,令,,则.关于的方程,即,解得,.当时,由,可得;要使原方程在上有两个不相等的实数根,则,解得.故实数的取值范围为.20、(1)详见解析;(2)详见解析【解析】(1)连结和,由条件可证得和,从而得到∥.(2)结合题意可得直线和必相交,根据线面关系再证明该交点直线上即可得到结论【详解】证明:(1)如图,连结和,在正方体中,,∵,∴,又,,∴又在正方体中,,,∴,又,∴同理可得,又,∴∴∥.(2)由题意可得(或者和不平行),又由(1)知∥,所以直线和必相交,不妨设,则,又,所以,同理因为,所以,所以、、三条直线交于一点【点睛】(1)证明两直线平行时,可根据三种平行间的转化关系进行证明,也可利用线面垂直的性质进行证明,解题时要注意合理选择方法进行求解(2)证明三线共点的方法是:先证明其中的两条直线相交,再证明该交点在第三条直线上.解题时要依据空间中的线面关系及三个公理,并结合图形进行求解21、(1);(2)见解析【解析】(1)根据弧长的公式和扇形的面积公式即可求扇形的弧长及该弧所在的弓形的面积;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 扁腺手术前后护理
- 幼儿园食堂承包合同范本
- 腮腺肿瘤护理查房教案
- 管理员劳动合同大全
- 《皮肤粘膜淋》课件
- 小学教师校本培训
- 混合痔的术后护理
- 手术缝针管理
- 腹腔镜手术安全管理
- 新建万年表石材项目立项申请报告
- 《中医妇科学》课程标准中医专业
- 深基坑施工基坑监测方案
- 中国传统文化第十章-古建筑与传统文化
- 道德与法治一年级上册全册第四单元教学设计
- DB13(J)-T 137-2012 塑料排水检查井应用技术规程
- 大班幼儿生命教育教案反思总结(3篇模板)
- 中国法律史-第一次平时作业-国开-参考资料
- 2024年安全生产教育培训计划
- 2024年共青团入团积极分子考试题库(含答案)
- 2024年浙江省杭州余杭区机关事业单位招用编外人员27人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 《公输》课件-【中职专用】高一语文(高教版2023基础模块上册)
评论
0/150
提交评论