版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
辽宁师大学附中2024年高三(最后冲刺)数学试题试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则下列结论中正确的是①函数的最小正周期为;②函数的图象是轴对称图形;③函数的极大值为;④函数的最小值为.A.①③ B.②④C.②③ D.②③④2.设,则关于的方程所表示的曲线是()A.长轴在轴上的椭圆 B.长轴在轴上的椭圆C.实轴在轴上的双曲线 D.实轴在轴上的双曲线3.如图,正方体中,,,,分别为棱、、、的中点,则下列各直线中,不与平面平行的是()A.直线 B.直线 C.直线 D.直线4.已知实数满足不等式组,则的最小值为()A. B. C. D.5.的展开式中的系数是()A.160 B.240 C.280 D.3206.设全集,集合,,则()A. B. C. D.7.已知双曲线,为坐标原点,、为其左、右焦点,点在的渐近线上,,且,则该双曲线的渐近线方程为()A. B. C. D.8.已知i是虚数单位,则1+iiA.-12+32i9.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.10.设f(x)是定义在R上的偶函数,且在(0,+∞)单调递减,则()A. B.C. D.11.用电脑每次可以从区间内自动生成一个实数,且每次生成每个实数都是等可能性的.若用该电脑连续生成3个实数,则这3个实数都小于的概率为()A. B. C. D.12.达芬奇的经典之作《蒙娜丽莎》举世闻名.如图,画中女子神秘的微笑,,数百年来让无数观赏者人迷.某业余爱好者对《蒙娜丽莎》的缩小影像作品进行了粗略测绘,将画中女子的嘴唇近似看作一个圆弧,在嘴角处作圆弧的切线,两条切线交于点,测得如下数据:(其中).根据测量得到的结果推算:将《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角大约等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,,且,则的最小值是______.14.若,则的最小值为________.15.的展开式中,项的系数是__________.16.设Sn为数列{an}的前n项和,若an0,a1=1,且2Sn=an(an+t),n∈N*,则S10=_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知各项均为正数的数列的前项和为,满足,,,,恰为等比数列的前3项.(1)求数列,的通项公式;(2)求数列的前项和为;若对均满足,求整数的最大值;(3)是否存在数列满足等式成立,若存在,求出数列的通项公式;若不存在,请说明理由.18.(12分)如图,在三棱锥中,,,侧面为等边三角形,侧棱.(1)求证:平面平面;(2)求三棱锥外接球的体积.19.(12分)已知函数(1)若对任意恒成立,求实数的取值范围;(2)求证:20.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)21.(12分)已知函数,.(1)当为何值时,轴为曲线的切线;(2)用表示、中的最大值,设函数,当时,讨论零点的个数.22.(10分)已知函数(其中是自然对数的底数)(1)若在R上单调递增,求正数a的取值范围;(2)若f(x)在处导数相等,证明:;(3)当时,证明:对于任意,若,则直线与曲线有唯一公共点(注:当时,直线与曲线的交点在y轴两侧).
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
因为,所以①不正确;因为,所以,,所以,所以函数的图象是轴对称图形,②正确;易知函数的最小正周期为,因为函数的图象关于直线对称,所以只需研究函数在上的极大值与最小值即可.当时,,且,令,得,可知函数在处取得极大值为,③正确;因为,所以,所以函数的最小值为,④正确.故选D.2、C【解析】
根据条件,方程.即,结合双曲线的标准方程的特征判断曲线的类型.【详解】解:∵k>1,∴1+k>0,k2-1>0,
方程,即,表示实轴在y轴上的双曲线,
故选C.【点睛】本题考查双曲线的标准方程的特征,依据条件把已知的曲线方程化为是关键.3、C【解析】
充分利用正方体的几何特征,利用线面平行的判定定理,根据判断A的正误.根据,判断B的正误.根据与相交,判断C的正误.根据,判断D的正误.【详解】在正方体中,因为,所以平面,故A正确.因为,所以,所以平面故B正确.因为,所以平面,故D正确.因为与相交,所以与平面相交,故C错误.故选:C【点睛】本题主要考查正方体的几何特征,线面平行的判定定理,还考查了推理论证的能力,属中档题.4、B【解析】
作出约束条件的可行域,在可行域内求的最小值即为的最小值,作,平移直线即可求解.【详解】作出实数满足不等式组的可行域,如图(阴影部分)令,则,作出,平移直线,当直线经过点时,截距最小,故,即的最小值为.故选:B【点睛】本题考查了简单的线性规划问题,解题的关键是作出可行域、理解目标函数的意义,属于基础题.5、C【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.6、B【解析】
可解出集合,然后进行补集、交集的运算即可.【详解】,,则,因此,.故选:B.【点睛】本题考查补集和交集的运算,涉及一元二次不等式的求解,考查运算求解能力,属于基础题.7、D【解析】
根据,先确定出的长度,然后利用双曲线定义将转化为的关系式,化简后可得到的值,即可求渐近线方程.【详解】如图所示:因为,所以,又因为,所以,所以,所以,所以,所以,所以,所以渐近线方程为.故选:D.【点睛】本题考查根据双曲线中的长度关系求解渐近线方程,难度一般.注意双曲线的焦点到渐近线的距离等于虚轴长度的一半.8、D【解析】
利用复数的运算法则即可化简得出结果【详解】1+i故选D【点睛】本题考查了复数代数形式的乘除运算,属于基础题。9、B【解析】
求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.10、D【解析】
利用是偶函数化简,结合在区间上的单调性,比较出三者的大小关系.【详解】是偶函数,,而,因为在上递减,,即.故选:D【点睛】本小题主要考查利用函数的奇偶性和单调性比较大小,属于基础题.11、C【解析】
由几何概型的概率计算,知每次生成一个实数小于1的概率为,结合独立事件发生的概率计算即可.【详解】∵每次生成一个实数小于1的概率为.∴这3个实数都小于1的概率为.故选:C.【点睛】本题考查独立事件同时发生的概率,考查学生基本的计算能力,是一道容易题.12、A【解析】
由已知,设.可得.于是可得,进而得出结论.【详解】解:依题意,设.则.,.设《蒙娜丽莎》中女子的嘴唇视作的圆弧对应的圆心角为.则,.故选:A.【点睛】本题考查了直角三角形的边角关系、三角函数的单调性、切线的性质,考查了推理能力与计算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、8【解析】
由整体代入法利用基本不等式即可求得最小值.【详解】,当且仅当时等号成立.故的最小值为8,故答案为:8.【点睛】本题考查基本不等式求和的最小值,整体代入法,属于基础题.14、【解析】
由基本不等式,可得到,然后利用,可得到最小值,要注意等号取得的条件。【详解】由题意,,当且仅当时等号成立,所以,当且仅当时取等号,所以当时,取得最小值.【点睛】利用基本不等式求最值必须具备三个条件:①各项都是正数;②和(或积)为定值;③等号取得的条件。15、240【解析】
利用二项式展开式的通项公式,令x的指数等于3,计算展开式中含有项的系数即可.【详解】由题意得:,只需,可得,代回原式可得,故答案:240.【点睛】本题主要考查二项式展开式的通项公式及简单应用,相对不难.16、55【解析】
由求出.由,可得,两式相减,可得数列是以1为首项,1为公差的等差数列,即求.【详解】由题意,当n=1时,,当时,由,可得,两式相减,可得,整理得,,即,∴数列是以1为首项,1为公差的等差数列,.故答案为:55.【点睛】本题考查求数列的前项和,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(2),(2),的最大整数是2.(3)存在,【解析】
(2)由可得(),然后把这两个等式相减,化简得,公差为2,因为,,为等比数列,所以,化简计算得,,从而得到数列的通项公式,再计算出,,,从而可求出数列的通项公式;(2)令,化简计算得,从而可得数列是递增的,所以只要的最小值大于即可,而的最小值为,所以可得答案;(3)由题意可知,,即,这个可看成一个数列的前项和,再写出其前()项和,两式相减得,,利用同样的方法可得.【详解】解:(2)由题,当时,,即当时,①②①-②得,整理得,又因为各项均为正数的数列.故是从第二项的等差数列,公差为2.又恰为等比数列的前3项,故,解得.又,故,因为也成立.故是以为首项,2为公差的等差数列.故.即2,4,8恰为等比数列的前3项,故是以为首项,公比为的等比数列,故.综上,(2)令,则所以数列是递增的,若对均满足,只要的最小值大于即可因为的最小值为,所以,所以的最大整数是2.(3)由,得,③④③-④得,⑤,⑥⑤-⑥得,,所以存在这样的数列,【点睛】此题考查了等差数列与等比数列的通项公式与求和公式,最值,恒成立问题,考查了推理能力与计算能力,属于中档题.18、(1)见解析;(2).【解析】
(1)设中点为,连接、,利用等腰三角形三线合一的性质得出,利用勾股定理得出,由线面垂直的判定定理可证得平面,再利用面面垂直的判定定理可得出平面平面;(2)先确定三棱锥的外接球球心的位置,利用三角形相似求出外接球的半径,再由球体的体积公式可求得结果.【详解】(1)设中点为,连接、,因为,所以.又,所以,又由已知,,则,所以,.又为正三角形,且,所以,因为,所以,,,平面,又平面,平面平面;(2)由于是底面直角三角形的斜边的中点,所以点是的外心,由(1)知平面,所以三棱锥的外接球的球心在上.在中,的垂直平分线与的交点即为球心,记的中点为点,则.由与相似可得,所以.所以三棱锥外接球的体积为.【点睛】本题考查面面垂直的证明,同时也考查了三棱锥外接球体积的计算,找出外接球球心的位置是解答的关键,考查推理能力与计算能力,属于中等题.19、(1);(2)见解析.【解析】
(1)将问题转化为对任意恒成立,换元构造新函数即可得解;(2)结合(1)可得,令,求导后证明其导函数单调递增,结合,即可得函数的单调区间和最小值,即可得证.【详解】(1)对任意恒成立等价于对任意恒成立,令,,则,当时,,单调递增;当时,,单调递减;有最大值,.(2)证明:由(1)知,当时,即,,,令,则,令,则,在上是增函数,又,当时,;当时,,在上是减函数,在上是增函数,,即,.【点睛】本题考查了利用导数解决恒成立问题,考查了利用导数证明不等式,考查了计算能力和转化化归思想,属于中档题.20、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解析】
(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、.从中选取三人共有以下种情形:、、、、、、、、、.其中至少有一位从事的是户外作业的有种情形,分别为:、、、、、、、、,所以所选的人中至少有一位从事的是户外作业的概率为.【点睛】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用列举法求解古典概型的概率问题,考查计算能力,属于中等题.21、(1);(2)见解析.【解析】
(1)设切点坐标为,然后根据可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 口腔科模拟题+参考答案
- 煤矿完工合同范例
- 合同范例内容
- 果场合伙合同范例
- 大棚西瓜种植收购合同范例
- 校园投票赞助合同范例
- 家庭劳务雇佣合同范例
- 2025年江苏货运驾驶从业资格证考试题库
- 合同范例纸质
- 《第九课 比比谁打字快:词组输入》教学实录-2023-2024学年新世纪版(2023)三年级上册
- 2024版2024年《囚歌》完整版课件
- 福建省泉州市2023-2024学年高一上学期期末质检英语试题 附答案
- 防止主播跳槽合同模板
- DB13-T 2092-2014 河北省特种设备使用安全管理规范
- CMOS-模拟集成电路课件完整
- 2024-2030年中国养生壶行业发展趋势及发展前景研究报告
- 2024年贵州省六盘水市中考道德与法治试题卷(含答案详解)
- 浙江省嘉兴市2023-2024学年高一上学期1月期末考试 英语试题
- 奶茶店租赁合同协议书模板
- 2024年快递员职业技能大赛考试题库(含答案)
- 24秋国家开放大学《会计信息系统(本)》测试题参考答案
评论
0/150
提交评论