版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省金华兰溪市实验中学2023-2024学年中考数学押题卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5) B.(3,-13) C.(2,-8) D.(4,-20)2.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是()A.10 B.12 C.20 D.243.如图,若AB∥CD,CD∥EF,那么∠BCE=()A.∠1+∠2 B.∠2-∠1C.180°-∠1+∠2 D.180°-∠2+∠14.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A. B.1 C. D.5.一次函数满足,且随的增大而减小,则此函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为()A.40° B.45° C.50° D.55°7.已知关于x的不等式组﹣1<2x+b<1的解满足0<x<2,则b满足的条件是()A.0<b<2 B.﹣3<b<﹣1 C.﹣3≤b≤﹣1 D.b=﹣1或﹣38.弘扬社会主义核心价值观,推动文明城市建设.根据“文明创建工作评分细则”,l0名评审团成员对我市2016年度文明刨建工作进行认真评分,结果如下表:人数2341分数80859095则得分的众数和中位数分别是()A.90和87.5 B.95和85 C.90和85 D.85和87.59.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.x(x﹣1)=21010.甲、乙两辆汽车沿同一路线从A地前往B地,甲车以a千米/时的速度匀速行驶,途中出现故障后停车维修,修好后以2a千米/时的速度继续行驶;乙车在甲车出发2小时后匀速前往B地,比甲车早30分钟到达.到达B地后,乙车按原速度返回A地,甲车以2a千米/时的速度返回A地.设甲、乙两车与A地相距s(千米),甲车离开A地的时间为t(小时),s与t之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为1小时;③两车在途中第二次相遇时t的值为5.25;④当t=3时,两车相距40千米,其中不正确的个数为()A.0个 B.1个 C.2个 D.3个11.为喜迎党的十九大召开,乐陵某中学剪纸社团进行了剪纸大赛,下列作品既是轴对称图形又是中心对称图形的是()A. B.C. D.12.下列方程中是一元二次方程的是()A. B.C. D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在△ABC中,∠ACB=90°,∠B=60°,AB=12,若以点A为圆心,AC为半径的弧交AB于点E,以点B为圆心,BC为半径的弧交AB于点D,则图中阴影部分图形的面积为__(保留根号和π)14.如图,若点的坐标为,则=________.15.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒2cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止.过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示.当点P运动5秒时,PD的长的值为_____.16.如图,在ABCD中,AB=8,P、Q为对角线AC的三等分点,延长DP交AB于点M,延长MQ交CD于点N,则CN=__________.17.16的算术平方根是.18.如图,等边△ABC的边长为6,∠ABC,∠ACB的角平分线交于点D,过点D作EF∥BC,交AB、CD于点E、F,则EF的长度为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.20.(6分)如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.求证:DP是⊙O的切线;若⊙O的半径为3cm,求图中阴影部分的面积.21.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.22.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径作⊙O交AB于点D,取AC的中点E,边结DE,OE、OD,求证:DE是⊙O的切线.23.(8分)在“一带一路”战略的影响下,某茶叶经销商准备把“茶路”融入“丝路”,经计算,他销售10kgA级别和20kgB级别茶叶的利润为4000元,销售20kgA级别和10kgB级别茶叶的利润为3500元.(1)求每千克A级别茶叶和B级别茶叶的销售利润;(2)若该经销商一次购进两种级别的茶叶共200kg用于出口,其中B级别茶叶的进货量不超过A级别茶叶的2倍,请你帮该经销商设计一种进货方案使销售总利润最大,并求出总利润的最大值.24.(10分)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?25.(10分)计算下列各题:(1)tan45°−sin60°•cos30°;(2)sin230°+sin45°•tan30°.26.(12分)已知抛物线过点,,求抛物线的解析式,并求出抛物线的顶点坐标.27.(12分)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长.
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】试题分析:=,∴点M(m,﹣m2﹣1),∴点M′(﹣m,m2+1),∴m2+2m2﹣1=m2+1.解得m=±2.∵m>0,∴m=2,∴M(2,﹣8).故选C.考点:二次函数的性质.2、B【解析】
根据图象可知点P在BC上运动时,此时BP不断增大,而从C向A运动时,BP先变小后变大,从而可求出BC与AC的长度.【详解】解:根据图象可知点P在BC上运动时,此时BP不断增大,
由图象可知:点P从B向C运动时,BP的最大值为5,即BC=5,
由于M是曲线部分的最低点,
∴此时BP最小,即BP⊥AC,BP=4,
∴由勾股定理可知:PC=3,
由于图象的曲线部分是轴对称图形,
∴PA=3,
∴AC=6,
∴△ABC的面积为:×4×6=12.故选:B.【点睛】本题考查动点问题的函数图象,解题关键是注意结合图象求出BC与AC的长度,本题属于中等题型.3、D【解析】
先根据AB∥CD得出∠BCD=∠1,再由CD∥EF得出∠DCE=180°-∠2,再把两式相加即可得出结论.【详解】解:∵AB∥CD,∴∠BCD=∠1,∵CD∥EF,∴∠DCE=180°-∠2,∴∠BCE=∠BCD+∠DCE=180°-∠2+∠1.故选:D.【点睛】本题考查的是平行线的判定,用到的知识点为:两直线平行,内错角相等,同旁内角互补.4、B【解析】
连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=,AC=,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.5、A【解析】试题分析:根据y随x的增大而减小得:k<0,又kb>0,则b<0,故此函数的图象经过第二、三、四象限,即不经过第一象限.故选A.考点:一次函数图象与系数的关系.6、C【解析】
根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=12【详解】∵OB=OC,
∴∠OBC=∠OCB.
又∠OBC=40°,
∴∠OBC=∠OCB=40°,
∴∠BOC=180°-2×40°=100°,
∴∠A=12【点睛】考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.7、C【解析】
根据不等式的性质得出x的解集,进而解答即可.【详解】∵-1<2x+b<1∴,∵关于x的不等式组-1<2x+b<1的解满足0<x<2,∴,解得:-3≤b≤-1,故选C.【点睛】此题考查解一元一次不等式组,关键是根据不等式的性质得出x的解集.8、A【解析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,可得答案.解:在这一组数据中90是出现次数最多的,故众数是90;排序后处于中间位置的那个数,那么由中位数的定义可知,这组数据的中位数是87.5;故选:A.“点睛”本题考查了众数、中位数的知识,掌握各知识点的概念是解答本题的关键.注意中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.9、B【解析】
设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.10、A【解析】解:①由函数图象,得a=120÷3=40,故①正确,②由题意,得5.5﹣3﹣120÷(40×2),=2.5﹣1.5,=1.∴甲车维修的时间为1小时;故②正确,③如图:∵甲车维修的时间是1小时,∴B(4,120).∵乙在甲出发2小时后匀速前往B地,比甲早30分钟到达.∴E(5,240).∴乙行驶的速度为:240÷3=80,∴乙返回的时间为:240÷80=3,∴F(8,0).设BC的解析式为y1=k1t+b1,EF的解析式为y2=k2t+b2,由图象得,,,解得,,∴y1=80t﹣200,y2=﹣80t+640,当y1=y2时,80t﹣200=﹣80t+640,t=5.2.∴两车在途中第二次相遇时t的值为5.2小时,故弄③正确,④当t=3时,甲车行的路程为:120km,乙车行的路程为:80×(3﹣2)=80km,∴两车相距的路程为:120﹣80=40千米,故④正确,故选A.11、C【解析】
根据轴对称和中心对称的定义去判断即可得出正确答案.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,也不是中心对称图形,故此选项错误;C、是轴对称图形,也是中心对称图形,故此选项正确;D、是轴对称图形,不是中心对称图形,故此选项错误.故选:C.【点睛】本题考查的是轴对称和中心对称的知识点,解题关键在于对知识点的理解和把握.12、C【解析】
找到只含有一个未知数,未知数的最高次数是2,二次项系数不为0的整式方程的选项即可.【详解】解:A、当a=0时,不是一元二次方程,故本选项错误;B、是分式方程,故本选项错误;C、化简得:是一元二次方程,故本选项正确;D、是二元二次方程,故本选项错误;故选:C.【点睛】本题主要考查一元二次方程,熟练掌握一元二次方程的定义是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、15π−18.【解析】
根据扇形的面积公式:S=分别计算出S扇形ACE,S扇形BCD,并且求出三角形ABC的面积,最后由S阴影部分=S扇形ACE+S扇形BCD-S△ABC即可得到答案.【详解】S阴影部分=S扇形ACE+S扇形BCD-S△ABC,∵S扇形ACE==12π,S扇形BCD==3π,S△ABC=×6×6=18,∴S阴影部分=12π+3π−18=15π−18.故答案为15π−18.【点睛】本题考查了扇形面积的计算,解题的关键是熟练的掌握扇形的面积公式.14、【解析】
根据勾股定理,可得OA的长,根据正弦是对边比斜边,可得答案.【详解】如图,由勾股定理,得:OA==1.sin∠1=,故答案为.15、2.4cm【解析】分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.详解:由图2可得,AC=3,BC=4,∴AB=.当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC-AC-CP=2,∵sin∠B==,∴PD=BP·sin∠B=2×==1.2(cm).故答案是:1.2cm.点睛:本题考查了动点问题的函数图象,勾股定理,锐角三角函数等知识,解答本题的关键是根据图形得到AC、BC的长度,此题难度一般.16、1【解析】
根据平行四边形定义得:DC∥AB,由两角对应相等可得:△NQC∽△MQA,△DPC∽△MPA,列比例式可得CN的长.【详解】∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CNQ=∠AMQ,∠NCQ=∠MAQ,∴△NQC∽△MQA,同理得:△DPC∽△MPA,∵P、Q为对角线AC的三等分点,∴,,设CN=x,AM=1x,∴,解得,x=1,∴CN=1,故答案为1.【点睛】本题考查了平行四边形的性质和相似三角形的判定和性质,熟练掌握两角对应相等,两三角形相似的判定方法是关键.17、4【解析】
正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为418、4【解析】试题分析:根据BD和CD分别平分∠ABC和∠ACB,和EF∥BC,利用两直线平行,内错角相等和等量代换,求证出BE=DE,DF=FC.然后即可得出答案.解:∵在△ABC中,BD和CD分别平分∠ABC和∠ACB,∴∠EBD=∠DBC,∠FCD=∠DCB,∵EF∥BC,∴∠EBD=∠DBC=∠EDB,∠FCD=∠DCB=∠FDC,∴BE=DE,DF=EC,∵EF=DE+DF,∴EF=EB+CF=2BE,∵等边△ABC的边长为6,∵EF∥BC,∴△ADE是等边三角形,∴EF=AE=2BE,∴EF==,故答案为4考点:等边三角形的判定与性质;平行线的性质.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、证明见解析.【解析】【分析】求出BF=CE,根据SAS推出△ABF≌△DCE,得对应角相等,由等腰三角形的判定可得结论.【详解】∵BE=CF,∴BE+EF=CF+EF,∴BF=CE,在△ABF和△DCE中,∴△ABF≌△DCE(SAS),∴∠GEF=∠GFE,∴EG=FG.【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.20、(1)证明见解析;(2).【解析】
(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.【详解】解:(1)证明:连接OD,∵∠ACD=60°,∴由圆周角定理得:∠AOD=2∠ACD=120°.∴∠DOP=180°﹣120°=60°.∵∠APD=30°,∴∠ODP=180°﹣30°﹣60°=90°.∴OD⊥DP.∵OD为半径,∴DP是⊙O切线.(2)∵∠ODP=90°,∠P=30°,OD=3cm,∴OP=6cm,由勾股定理得:DP=3cm.∴图中阴影部分的面积21、(3)a=,方程的另一根为;(2)答案见解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.22、详见解析.【解析】试题分析:由三角形的中位线得出OE∥AB,进一步利用平行线的性质和等腰三角形性质,找出△OCE和△ODE相等的线段和角,证得全等得出答案即可.试题解析:证明:∵点E为AC的中点,OC=OB,∴OE∥AB,∴∠EOC=∠B,∠EOD=∠ODB.又∵∠ODB=∠B,∴∠EOC=∠EOD.在△OCE和△ODE中,∵OC=OD,∠EOC=∠EOD,OE=OE,∴△OCE≌△ODE(SAS),∴∠EDO=∠ECO=90°,∴DE⊥OD,∴DE是⊙O的切线.点睛:此题考查切线的判定.证明的关键是得到△OCE≌△ODE.23、(1)100元和150元;(2)购进A种级别的茶叶67kg,购进B种级别的茶叶133kg.销售总利润最大为26650元.【解析】试题分析:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元;
(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200-a)kg.销售总利润为w元.构建一次函数,利用一次函数的性质即可解决问题.试题解析:解:(1)设每千克A级别茶叶和B级别茶叶的销售利润分别为x元和y元.由题意,解得,答:每千克A级别茶叶和B级别茶叶的销售利润分别为100元和150元.(2)设购进A种级别的茶叶akg,购进B种级别的茶叶(200﹣a)kg.销售总利润为w元.由题意w=100a+150(200﹣a)=﹣50a+30000,∵﹣50<0,∴w随x的增大而减小,∴当
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 彩盒购买合同范例
- 买房带车位合同范例
- 废品店门面转让合同范例
- 水沟劳务分包合同范例
- 2024年秋九年级化学上册 第三单元 分子和原子教学实录 (新版)新人教版
- 唐山幼儿师范高等专科学校《机器人专业英语》2023-2024学年第一学期期末试卷
- 影院承包经营合同范例
- 唐山学院《数学课堂教学技能训练与评价》2023-2024学年第一学期期末试卷
- 工程 代付款 合同范例
- 唐山师范学院《商业品牌整体策划》2023-2024学年第一学期期末试卷
- 纪检委员工作职责
- 2024年办公室档案管理工作总结模版(3篇)
- 2025年小学五年级数学(北京版)-分数的意义(三)-3学习任务单
- 网络信息安全工程师招聘面试题及回答建议(某大型央企)2025年
- 2024年煤矿个人工作总结例文(4篇)
- 江苏省南通市多校2024-2025学年二年级上学期期中数学试卷
- 数字化转型成熟度模型与评估(DTMM)国家标准解读 2024
- 河南省名校八校联考2024-2025学年高二上学期期中模拟考试语文试题(含答案解析)
- 聘请专家的协议书(2篇)
- 2024年国家危险化学品生产单位安全管理人员考试题库(含答案)
- 《新的实验》教学课件1
评论
0/150
提交评论