版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共6页2024年山西省晋中学市数学九年级第一学期开学质量跟踪监视模拟试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)已知关于x的方程的一个根为,则m的值为()A. B. C. D.2、(4分)矩形OABC在平面直角坐标系中的位置如图所示,已知,点A在x轴上,点C在y轴上,P是对角线OB上一动点(不与原点重合),连接PC,过点P作,交x轴于点D.下列结论:①;②当点D运动到OA的中点处时,;③在运动过程中,是一个定值;④当△ODP为等腰三角形时,点D的坐标为.其中正确结论的个数是()A.1个 B.2个 C.3个 D.4个3、(4分)如图,在平面直角坐标系中,一次函数经过,两点,则不等式的解是A. B. C. D.4、(4分)函数的自变量x的取值范围是()A.x≠0 B.x≠1 C.x≥1 D.x≤15、(4分)下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.6、(4分)下列下列算式中,正确的是()A. B.C. D.7、(4分)如图,过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;点与点关于直线对称;过点作轴的垂线,交直线于点;按此规律作下去,则点的坐标为A.(2n,2n-1) B.(,) C.(2n+1,2n) D.(,)8、(4分)若函数的图象与坐标轴有三个交点,则b的取值范围是A.且 B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)学习委员调查本班学生课外阅读情况,对学生喜爱的书籍进行分类统计,其中“古诗词类”的频数为15人,频率为0.3,那么被调查的学生人数为________.10、(4分)“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场.图中的函数图象刻画了“龟兔再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1表示乌龟所行的路程,y2表示兔子所行的路程).有下列说法:①“龟兔再次赛跑”的路程为1000米;②兔子和乌龟同时从起点出发;③乌龟在途中休息了10分钟;④兔子在途中750米处追上乌龟.其中正确的说法是.(把你认为正确说法的序号都填上)11、(4分)体育张教师为了解本校八年级女生:“1分钟仰卧起坐”的达标情况,随机抽取了20名女生进行仰卧起坐测试.如图是根据测试结果绘制的频数分布直方图.如果这组数据的中位数是40次,那么仰卧起坐次数为40次的女生人数至少有__________人.12、(4分)点A(0,3)向右平移2个单位长度后所得的点A’的坐标为_____.13、(4分)在正方形ABCD中,E在AB上,BE=2,AE=1,P是BD上的动点,则PE和PA的长度之和最小值为___________.三、解答题(本大题共5个小题,共48分)14、(12分)垃圾分类有利于对垃圾进行分流处理,能有效提高垃圾的资源价值和经济价值,力争物尽其用,为了了解同学们对垃圾分类相关知识的掌握情况,增强同学们的环保意识,某校对本校甲、乙两班各60名学生进行了垃极分类相关知识的测试,并分别随机抽取了15份成绩,整理分析过程如下,请补充完整(收集数据)甲班15名学生测试成绩统计如下:(满分100分)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80乙班15名学生测试成绩统计如下:(满分100分)86,89,83,76,73,78,67,80,80,79,80,84,82,80,83(整理数据)按如下分数段整理、描述这两组样本数据组别班级65.6~70.570.5~75.575.5~80.580.5~85.585.5~90.590.5~95.5甲班224511乙班11ab20在表中,a=,b=.(分析数据)(1)两组样本数据的平均数、众数、中位数、方差如下表所示:班级平均数众数中位数方差甲班80x8047.6乙班8080y26.2在表中:x=,y=.(2)若规定得分在80分及以上(含80分)为合格,请估计乙班60名学生中垃圾分类相关知识合格的学生有人(3)你认为哪个班的学生掌握垃圾分类相关知识的情况较好,说明理由.15、(8分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.16、(8分)以△ABC的三边在BC同侧分别作三个等边三角形△ABD,△BCE,△ACF,试回答下列问题:(1)四边形ADEF是什么四边形?请证明:(2)当△ABC满足什么条件时,四边形ADEF是矩形?(3)当△ABC满足什么条件时,四边形ADEF是菱形?(4)当△ABC满足什么条件时,能否构成正方形?(5)当△ABC满足什么条件时,无法构成四边形?17、(10分)在“母亲节”前夕,店主用不多于900元的资金购进康乃馨和玫瑰两种鲜花共500枝,康乃馨进价为2元/枝,玫瑰进价为1.5元/枝,问至少购进玫瑰多少枝?18、(10分)黄岩岛是我国南沙群岛的一个小岛.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一艘外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.如图是渔政船及渔船与港口的距离s(海里)和渔船离开港口的时间t(时)之间的函数图象.(假设渔船与渔政船沿同一航线航行)(1)直接写出渔船离开港口的距离s和渔船离开港口的时间t之间的函数关系式;(2)已知两船相距不超过30海里时,可以用对讲机通话,在渔政船驶往黄岩岛的过程中,求两船可以用对讲机通话的时间长?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知、为有理数,、分别表示的整数部分和小数部分,且,则.20、(4分)一次函数y=kx+b(k、b是常数)当自变量x的取值为1≤x≤5时,对应的函数值的范围为﹣2≤y≤2,则此一次函数的解析式为_____.21、(4分)如图,将矩形绕点顺时针旋转度,得到矩形.若,则此时的值是_____.22、(4分)将化成最简二次根式为______.23、(4分)如图,AB∥CD,E、F分别是AC、BD的中点,若AB=5,CD=3,则EF的长为______________.二、解答题(本大题共3个小题,共30分)24、(8分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。25、(10分)在△ABC中,AB=AC,∠BAC=36°,将△ABC绕点A按逆时针旋转角度ɑ(0°<ɑ<180°)得到△ADE,连接CE、BD,BD与CE相交于点F。(1)求证:BD=CE(2)当ɑ等于多少度时,四边形AFDE是平行四边形?并说明理由。26、(12分)计算:16﹣(π﹣2019)0+2﹣1.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
把x=﹣1代入方程可得关于m的方程,解方程即得答案.【详解】解:∵x=﹣1是方程的一个根,∴,解得:.故选:A.本题考查了一元二次方程的解的概念和简单的方程的解法,属于基础题型,熟知一元二次方程的解的定义是关键.2、D【解析】
①根据矩形的性质即可得到;故①正确;②由点D为OA的中点,得到,根据勾股定理即可得到,故②正确;③如图,过点P作于F,FP的延长线交BC于E,,则,根据三角函数的定义得到,求得,根据相似三角形的性质得到,根据三角函数的定义得到,故③正确;④当为等腰三角形时,Ⅰ、,解直角三角形得到,Ⅱ、OP=OD,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;Ⅲ、,根据等腰三角形的性质和四边形的内角和得到,故不合题意舍去;于是得到当为等腰三角形时,点D的坐标为.故④正确.【详解】解:①∵四边形OABC是矩形,,;故①正确;②∵点D为OA的中点,,,故②正确;③如图,过点P作A于F,FP的延长线交BC于E,,四边形OFEC是矩形,,设,则,在中,,,,,,,,,,,,,,,故③正确;④,四边形OABC是矩形,,,,当为等腰三角形时,Ⅰ、Ⅱ、,,故不合题意舍去;Ⅲ、,,故不合题意舍去,∴当为等腰三角形时,点D的坐标为.故④正确,故选:D.考查了矩形的性质,锐角三角函数的定义,相似三角形的判定和性质,勾股定理,等腰三角形的性质,构造出相似三角形表示出CP和PD是解本题的关键.3、D【解析】
将A(0,2),B(3,0)代入y=ax+b得出a,b值,再代入ax+b>0即可求出答案.【详解】将A(0,2),B(3,0)代入y=ax+b得,即,x<3.正确选D.根据函数的图象和交点坐标即可求得结果.此题考查了反比例函数与一次函数的交点问题,关键是注意掌握数形结合思想的应用.4、B【解析】根据题意若函数y=有意义,可得x-1≠0;解得x≠1;故选B5、D【解析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.6、B【解析】
根据二次根式的加减运算法则和二次根式的性质逐项计算化简进行判断.【详解】解:A项,与不是同类二次根式,不能合并,故本选项错误;B项,,正确;C项,,故本选项错误;D项,,故本选项错误;故选B.本题考查了二次根式的性质和加减运算,正确的进行二次根式的化简和根据加减运算法则进行计算是解题的关键.7、B【解析】
先根据题意求出点A2的坐标,再根据点A2的坐标求出B2的坐标,以此类推总结规律便可求出点的坐标.【详解】∵∴∵过点作轴的垂线,交直线于点∴∵∴∵过点作轴的垂线,交直线于点∴∵点与点关于直线对称∴以此类推便可求得点An的坐标为,点Bn的坐标为故答案为:B.本题考查了坐标点的规律题,掌握坐标点的规律、轴对称的性质是解题的关键.8、A【解析】抛物线与坐标轴有三个交点,则抛物线与x轴有2个交点,与y轴有一个交点.解:∵函数的图象与坐标轴有三个交点,∴,且,解得,b<1且b≠0.故选A.二、填空题(本大题共5个小题,每小题4分,共20分)9、50【解析】
根据频数与频率的数量关系即可求出答案.【详解】解:设被调查的学生人数为x,
∴,
∴x=50,经检验x=50是原方程的解,
故答案为:50本题考查频数与频率,解题的关键是正确理解频数与频率的关系,本题属于基础题型.10、①③④【解析】
根据图象可知:龟兔再次赛跑的路程为1000米,故①正确;兔子在乌龟跑了40分钟之后开始跑,故②错误;乌龟在30~40分钟时的路程为0,故这10分钟乌龟没有跑在休息,故③正确;y1=20x﹣200(40≤x≤60),y2=100x﹣4000(40≤x≤50),当y1=y2时,兔子追上乌龟,此时20x﹣200=100x﹣4000,解得:x=47.5,y1=y2=750米,即兔子在途中750米处追上乌龟,故④正确,综上可得①③④正确.11、1【解析】
根据中位数的定义求解可得.【详解】解:∵这20个数据的中位数是第10、11个数据的平均数,且第10个、11个全部位于第三组(40≤x<10)内,∴第10个、11个数据均为40,∵小于40的有6个,∴第7、8、9、10、11个数据一定为40,∴仰卧起坐次数为40次的女生人数至少有1人,故答案为:1.本题主要考查频数分布直方图和中位数,解题的关键是掌握中位数的概念.12、(2,3)【解析】根据横坐标右移加,左移减;纵坐标上移加,下移减可得A′的坐标为(0+2,3).解:点A(0,3)向右平移2个单位长度后所得的点A′的坐标为(0+2,3),
即(2,3),
故答案为:(2,3).13、【解析】
利用轴对称最短路径求法,得出A点关于BD的对称点为C点,再利用连接EC交BD于点P即为最短路径位置,利用勾股定理求出即可.【详解】解:连接AC,EC,EC与BD交于点P,此时PA+PE的最小,即PA+PE就是CE的长度
∵正方形ABCD中,BE=2,AE=1,
∴BC=AB=3,
∴CE===,故答案为.本题考查利用轴对称求最短路径问题以及正方形的性质和勾股定理,利用正方形性质得出A,C关于BD对称是解题关键.三、解答题(本大题共5个小题,共48分)14、【整理数据】:7,4;【分析数据】(1)85,80;(2)40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,见解析.【解析】
由收集的数据即可得;(1)根据众数和中位数的定义求解可得;(2)用总人数乘以乙班样本中合格人数所占比例可得;(3)甲、乙两班的方差判定即可.【详解】解:乙班75.5~80.5分数段的学生数为7,80.5~85.5分数段的学生数为4,故a=7,b=4,故答案为:7,4;(1)68,72,89,85,82,85,74,92,80,85,78,85,69,76,80,众数是x=85,67,73,76,78,79,80,80,80,80,82,83,83,84,86,89,中位数是y=80,故答案为:85,80;(2)60×=40(人),即合格的学生有40人,故答案为:40;(3)乙班的学生掌握垃圾分类相关知识的整体水平较好,∵甲班的方差>乙班的方差,∴乙班的学生掌握垃圾分类相关知识的整体水平较好.本题考查了频数分布直方图,众数,中位数,正确的理解题意是解题的关键.15、(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC的面积为10.【解析】【分析】(1)A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC边长为5,BC边上的高为4,再计算面积.【详解】解:(1)直角坐标系如图所示.图书馆的坐标为B(-2,-2).(2)体育馆的位置C如图所示.观察可得△ABC中BC边长为5,BC边上的高为4,所以△ABC的面积为×5×4=10.【点睛】本题考核知识点:平面直角坐标系.解题关键点:理解坐标的意义,利用坐标求出线段长度.16、(1)见解析;(2)当△ABC中的∠BAC=150°时,四边形ADEF是矩形;(3)当△ABC中的AB=AC时,四边形ADEF是菱形;(4)当∠BAC=150°且AB=AC时,四边形ADEF是正方形;(5)当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.【解析】
(1)通过证明△DBE≌△ABC,得到DE=AC,利用等边三角形ACF,可得DE=AF,同理证明与全等,利用等边三角形,得AD=EF,可得答案.(2)利用平行四边形ADEF是矩形,结合已知条件等边三角形得到即可.(3)利用平行四边形ADEF是菱形形,结合已知条件等边三角形得到即可.(4)结合(2)(3)问可得答案.(5)当四边形ADEF不存在时,即出现三个顶点在一条直线上,因此可得答案。【详解】解:(1)∵△BCE、△ABD是等边三角形,∴∠DBA=∠EBC=60°,AB=BD,BE=BC,∴∠DBE=∠ABC,∴△DBE≌△ABC,∴DE=AC,又△ACF是等边三角形,∴AC=AF,∴DE=AF,同理可证:AD=EF,∴四边形ADEF是平行四边形.(2)假设四边形ADEF是矩形,则∠DAF=90°,又∠DAB=∠FAC=60°,∠DAB+∠FAC+∠DAF+∠BAC=360°∴∠BAC=150°.因此当△ABC中的∠BAC=150°时,四边形ADEF是矩形.(3)假设四边形ADEF是菱形,则AD=DE=EF=AF∵AB=AD,AC=AF,∴AB=AC因此当△ABC中的AB=AC时,四边形ADEF是菱形.(4)结合(2)(3)问可知当∠BAC=150°且AB=AC时,四边形ADEF是正方形.(5)由图知道:∠DAB+∠FAC+∠DAF+∠BAC=360°∴当∠BAC=60°时,D、A、F为同一直线,与E点构不成四边形,即以A、D、E、F为顶点的四边形不存在.本题考查了平行四边形的判定,菱形,矩形,正方形的性质与判定,全等三角形的判定,等边三角形的性质等知识点的应用,是一道综合性比较强的题目,掌握相关的知识点是解题的关键.17、至少购进玫瑰200枝.【解析】
由康乃馨和玫瑰共500枝,可设玫瑰x枝,康乃馨(500-x)枝,可求出每种花的总进价,再利用两种花总进价和“不多于900元”列出不等式并解答.【详解】解:设购进玫瑰x枝,则购进康乃馨(500-x)枝,列不等式得:1.5x+2(500-x)≤900解得:x≥200答:至少购进玫瑰200枝.本题考查了一元一次不等式的应用,关键是找准不等关系列不等式,是常考题型.18、(1)答案见解析;(2)0.8小时.【解析】
(1)由图象可得出渔船离港口的距离s和它离开港口的时间t的函数关系式,分为三段求函数关系式;(2)在渔政船驶往黄岩岛的过程中,8<t≤13,渔船与渔政船相距30海里,有两种可能:①s渔﹣s渔政=30,②s渔政﹣s渔=30,将函数关系式代入,列方程求t.【详解】解:(1)当0≤t≤5时,s=30t,当5<t≤8时,s=150,当8<t≤13时,s=﹣30t+390;(2)s渔=﹣30t+390,s渔政=45t﹣360,分两种情况:①s渔﹣s渔政=30,﹣30t+390﹣(45t﹣360)=30,解得t=(或9.6);②s渔政﹣s渔=30,45t﹣360﹣(﹣30t+390)=30,解得t=(或10.4)所以10.4﹣9.6=0.8(小时)所以,两船可以用对讲机通话的时间长为0.8小时.本题考查了一次函数的应用.关键是根据图象求出渔船的分段函数的解析式及渔政船行驶的函数关系式.一、填空题(本大题共5个小题,每小题4分,共20分)19、1.【解析】试题分析:∵2<<3,∴5>>1,∴m=1,n=,∵,∴,化简得:,等式两边相对照,因为结果不含,∴且,解得a=3,b=﹣2,∴2a+b=2×3﹣2=6﹣2=1.故答案为1.考点:估算无理数的大小.20、y=x﹣1或y=﹣x+1【解析】
分k>0及k<0两种情况考虑:当k>0时,y值随x的增大而增大,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式;当k<0时,y值随x的增大而减小,由x、y的取值范围可得出点的坐标,由点的坐标利用待定系数法即可求出一次函数解析式.综上即可得出结论.【详解】当k>0时,y值随x的增大而增大,∴,解得:,∴一次函数的解析式为y=x﹣1;当k<0时,y值随x的增大而减小,∴,解得:,∴一次函数的解析式为y=﹣x+1.综上所述:一次函数的解析式为y=x﹣1或y=﹣x+1.故答案为y=x﹣1或y=﹣x+1.本题考查了待定系数法求一次函数解析式以及一次函数的性质,分k>0及k<0两种情况利用待定系数法求出函数解析式是解题的关键.21、60°或300°【解析】
由“SAS”可证△DCG≌△ABG,可得CG=BG,由旋转的性质可得BG=BC,可得△BCG是等边三角形,即可求解.【详解】解:如图,连接,∵四边形ABCD是矩形,∴CD=AB,∠DAB=∠ADC=90°,∵DG=AG,∴∠ADG=∠DAG,∴∠CDG=∠GAB,且CD=AB,DG=AG,∴△DCG≌△ABG(SAS),∴CG=BG,∵将矩形ABCD绕点B顺时针旋转α度(0°<α<360°),得到矩形BEFG,∴BC=BG,∠CBG=α,∴BC=BG=CG,∴△BCG是等边三角形,∴∠CBG=α=60°,同理当G点在AD的左侧时,△BCG仍是等边三角形,Α=300°故答案为60°或300°.本题考查了旋转的性质,全等三角形的判定和性质,等边三角形的判定和性质,证明△BCG是等边三角形是本题的关键.22、1【解析】
最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.【详解】化成最简二次根式为1.故答案为1本题考核知识点:简二次根式.解题关键点:理解简二次根式的条件.23、1【解析】分析:连接DE并延长交AB于H,证明△DCE≌△HAE,根据全等三角形的性质可得DE=HE,DC=AH,则EF是△DHB的中位线,再根据中位线的性质可得答案.详解:连接DE并延长交AB于H.∵CD∥AB,∴∠C=∠A,∵E是AC中点,∴DE=EH,在△DCE和△HAE
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 代理记账及税务争议解决合同
- 二零二四年度版权许可合同for文学作品with收益分成
- 2024年度起重机安全防护用品采购合同
- 二零二四年度货物进出口及代理服务合同
- 2024年度融资租赁合同:某航空公司与租赁公司关于飞机租赁的合同
- 2024年度连锁加盟协议
- 2024年度房地产买卖合同(含装修及附加条款)
- 二零二四年度林地租赁合同
- 二零二四年度人力资源服务合同:猎头服务与员工培训方案3篇
- 2024年度农业科技项目研发与合作合同
- GB/T 44800-2024太阳能光热发电站储热/传热用工作介质技术要求熔融盐
- 2024年全国教育大会精神全文课件
- 成都银行招聘真题
- 文件袋、档案袋密封条模板
- 氢气提纯PPT精选文档
- 药店商品分类目录(中西成药类、中药饮片、食品类、剂型)
- 配电设备的日常管理及维护保养(PPT41页)
- 网络教研——开辟校本教研新模式
- 教材自编传统节日校本课程
- 楼宇自控系统调试方案
- 《薪酬管理》.案例与讨论
评论
0/150
提交评论