2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题含解析_第1页
2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题含解析_第2页
2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题含解析_第3页
2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题含解析_第4页
2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江苏省常州市三河口高级中学数学高一上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知集合,则()A. B.C. D.2.已知集合A=,B=,则A.AB= B.ABC.AB D.AB=R3.全称量词命题“,”的否定是()A., B.,C., D.以上都不正确4.已知O是所在平面内的一定点,动点P满足,则动点P的轨迹一定通过的()A.内心 B.外心C.重心 D.垂心5.点A,B,C,D在同一个球的球面上,,,若四面体ABCD体积的最大值为,则这个球的表面积为A. B.C. D.6.若-3和1是函数y=loga(mx2+nx-2)的两个零点,则y=logn|x|的图象大致是()A. B.C. D.7.已知,则()A. B.C. D.8.下列说法不正确的是A.方程有实根函数有零点B.有两个不同的实根C.函数在上满足,则在内有零点D.单调函数若有零点,至多有一个9.某集团校为调查学生对学校“延时服务”的满意率,想从全市3个分校区按学生数用分层随机抽样的方法抽取一个容量为的样本.已知3个校区学生数之比为,如果最多的一个校区抽出的个体数是60,那么这个样本的容量为()A. B.C. D.10.已知函数则函数的最大值是A.4 B.3C.5 D.二、填空题:本大题共6小题,每小题5分,共30分。11.若函数满足,且当时,则______12.已知圆心为(1,1),经过点(4,5),则圆标准方程为_____________________.13.计算:__________,__________14.体积为8的正方体的顶点都在同一球面上,则该球面的表面积为__________.15.若函数在区间上为增函数,则实数的取值范围为______.16.函数在上存在零点,则实数a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.我们知道,函数的图象关于坐标原点成中心对称图形的充要条件是函数为奇函数,有同学发现可以将其推广为:函数的图象关于点成中心对称图形的充要条件是函数为奇函数.若函数的图象关于点对称,且当时,.(1)求的值;(2)设函数.(i)证明函数的图象关于点对称;(ii)若对任意,总存在,使得成立,求的取值范围.18.国际上常用恩格尔系数r来衡量一个国家或地区的人民生活水平.根据恩格尔系数的大小,可将各个国家或地区的生活水平依次划分为:贫困,温饱,小康,富裕,最富裕等五个级别,其划分标准如下表:级别贫困温饱小康富裕最富裕标准r>60%50%<r≤60%40%<r=50%30%<r≤40%r≤30%某地区每年底计算一次恩格尔系数,已知该地区2000年底的恩格尔系数为60%.统计资料表明:该地区食物支出金额年平均增长4%,总支出金额年平均增长.根据上述材料,回答以下问题.(1)该地区在2010年底是否已经达到小康水平,说明理由;(2)最快到哪一年底,该地区达到富裕水平?参考数据:,,,19.已知函数的定义域为A,的值域为B(1)求A,B;(2)设全集,求20.已知,,,.(1)求的值;(2)求的值.21.旅游社为某旅游团包飞机去旅游,其中旅行社的包机费为15000元.旅游团中每人的飞机票按以下方式与旅行社结算:若旅游团人数在30人或30人以下,飞机票每张收费900元;若旅游团人数多于30人,则给予优惠,每多1人,机票费每张减少10元,但旅游团人数最多为75人(1)写出飞机票的价格关于旅游团人数的函数;(2)旅游团人数为多少时,旅行社可获得最大利润?

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用集合间的关系,集合的交并补运算对每个选项分析判断.【详解】由题,故A错;∵,,∴,B正确;,C错;,D错;故选:B2、A【解析】由得,所以,选A点睛:对于集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图处理3、C【解析】根据全称量词命题的否定是存在量词命题,即可得出结论.【详解】全称量词命题“,”的否定为“,”.故选:C.4、A【解析】表示的是方向上的单位向量,画图象,根据图象可知点在的角平分线上,故动点必过三角形的内心.【详解】如图,设,,已知均为单位向量,故四边形为菱形,所以平分,由得,又与有公共点,故三点共线,所以点在的角平分线上,故动点的轨迹经过的内心.故选:A.5、D【解析】根据题意,画出示意图,结合三角形面积及四面积体积的最值,判断顶点D的位置;然后利用勾股定理及球中的线段关系即可求得球的半径,进而求得球的面积【详解】根据题意,画出示意图如下图所示因为,所以三角形ABC为直角三角形,面积为,其所在圆面的小圆圆心在斜边AC的中点处,设该小圆的圆心为Q因为三角形ABC的面积是定值,所以当四面体ABCD体积取得最大值时,高取得最大值即当DQ⊥平面ABC时体积最大所以所以设球心为O,球的半径为R,则即解方程得所以球的表面积为所以选D【点睛】本题考查了空间几何体的外接球面积的求法,主要根据题意,正确画出图形并判断点的位置,属于难题6、C【解析】运用零点的定义和一元二次方程的解法可得【详解】根据题意得,解得,∵n=2>1由对数函数的图象得答案为C.故选C【点睛】本题考查零点的定义,一元二次方程的解法7、B【解析】利用诱导公式,化简条件及结论,再利用二倍角公式,即可求得结论【详解】解:∵sin,∴sin,∵sinsincos(2α)=1﹣2sin21故选B【点睛】本题考查三角函数的化简,考查诱导公式、二倍角公式的运用,属于基础题8、C【解析】A选项,根据函数零点定义进行判断;B选项,由根的判别式进行求解;C选项,由零点存在性定理及举出反例进行说明;D选项,由函数单调性定义及零点存在性定理进行判断.【详解】A.根据函数零点的定义可知:方程有实根⇔函数有零点,∴A正确B.方程对应判别式,∴有两个不同实根,∴B正确C.根据根的存在性定理可知,函数必须是连续函数,否则不一定成立,比如函数,满足条件,但在内没有零点,∴C错误D.若函数为单调函数,则根据函数单调性的定义和函数零点的定义可知,函数和x轴至多有一个交点,∴单调函数若有零点,则至多有一个,∴D正确故选:C9、B【解析】利用分层抽样比求解.【详解】因为样本容量为,且3个校区学生数之比为,最多的一个校区抽出的个体数是60,所以,解得,故选:B10、B【解析】,从而当时,∴的最大值是考点:与三角函数有关的最值问题二、填空题:本大题共6小题,每小题5分,共30分。11、1009【解析】推导出,当时,从而当时,,,由此能求出的值【详解】∵函数满足,∴,∵当时,∴当时,,,∴故答案为1009【点睛】本题主要考查函数值的求法,考查函数性质等基础知识,考查运算求解能力,是基础题12、【解析】设出圆的标准方程,代入点的坐标,求出半径,求出圆的标准方程【详解】设圆的标准方程为(x-1)2+(y-1)2=R2,由圆经过点(4,5)得R2=25,从而所求方程为(x-1)2+(y-1)2=25,故答案为(x-1)2+(y-1)2=25【点睛】本题主要考查圆的标准方程,利用了待定系数法,关键是确定圆的半径13、①.0②.-2【解析】答案:0,14、【解析】正方体体积8,可知其边长为2,正方体的体对角线为=2,即为球的直径,所以半径为,所以球的表面积为=12π故答案为:12π点睛:设几何体底面外接圆半径为,常见的图形有正三角形,直角三角形,矩形,它们的外心可用其几何性质求;而其它不规则图形的外心,可利用正弦定理来求.若长方体长宽高分别为则其体对角线长为;长方体的外接球球心是其体对角线中点.找几何体外接球球心的一般方法:过几何体各个面的外心分别做这个面的垂线,交点即为球心.三棱锥三条侧棱两两垂直,且棱长分别为,则其外接球半径公式为:.15、【解析】由复合函数的同增异减性质判断得在上单调递减,再结合对称轴和区间边界值建立不等式即可求解.【详解】由复合函数的同增异减性质可得,在上严格单调递减,二次函数开口向上,对称轴为所以,即故答案为:16、【解析】由可得,求出在上的值域,则实数a的取值范围可求【详解】由,得,即由,得,又∵函数在上存在零点,即实数a的取值范围是故答案为【点睛】本题考查函数零点的判定,考查函数值域的求法,是基础题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)(i)证明见解析;(ii).【解析】(1)根据题意∵为奇函数,∴,令x=1即可求出;(2)(i)验证为奇函数即可;(ii))求出在区间上的值域为A,记在区间上的值域为,则.由此问题转化为讨论f(x)的值域B,分,,三种情况讨论即可.【小问1详解】∵为奇函数,∴,得,则令,得.【小问2详解】(i),∵为奇函数,∴为奇函数,∴函数的图象关于点对称.(ii)在区间上单调递增,∴在区间上的值域为,记在区间上的值域为,由对,总,使得成立知,①当时,上单调递增,由对称性知,在上单调递增,∴在上单调递增,只需即可,得,∴满足题意;②当时,在上单调递减,在上单调递增,由对称性知,在上单调递增,在上单调递减,∴在上单调递减,在上单调递增,在上单调递减,∴或,当时,,,∴满足题意;③当时,在上单调递减,由对称性知,在上单调递减,∴在上单调递减,只需即可,得,∴满足题意.综上所述,的取值范围为.18、(1)已经达到,理由见解析(2)2022年【解析】(1)根据该地区食物支出金额年平均增长4%,总支出金额年平均增长的比例列式求解,判断十年后是否达到即可.(2)假设经过n年,该地区达到富裕水平,列式,利用指对数互化解不等式即可.【小问1详解】该地区2000年底的恩格尔系数为%,则2010年底的思格尔系数为因为所以1,则所以所以该地区在2010年底已经达到小康水平【小问2详解】从2000年底算起,设经过n年,该地区达到富裕水平则,故,即化为因为,则In,所以因为所以所以,最快到2022年底,该地区达到富裕水平19、(1),;(2).【解析】(1)由,可得定义域,由二次函数性质得得值域,即得;(2)根据集合运算法则计算【详解】(1)由得:,解得..∴,(2)由(1)得,∴.【点睛】本题考查求函数的定义域与值域,考查集合的综合运算,属于基础题20、(1);(2).【解析】(1)由已知利用同角三角函数基本关系式可求,的值,进而根据,利用两角差的余弦函数公式即可求解(2)利用二倍角公式可求,的值,进而即可代入求解【详解】(1)因为,所以又因为,所以所以(2)因为,所以所以【点睛】本题主要考查了同角三角函数基本关系式,两角差的余弦函数公式,二倍角公式在三角函数化简求值中的应用,考查了计算能力和转化思想21、(1).(2)旅游团人数为60时,旅行社可获得最大利润【解析】(1)根据自变量的取值范围,分0或,确定每张飞机票价的函数关系式;(Ⅱ)利用所有人的费

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论