版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市平谷区2025届高二上数学期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知空间向量,则()A. B.C. D.2.已知命题:△中,若,则;命题:函数,,则的最大值为.则下列命题是真命题的是()A. B.C. D.3.已知E、F分别为椭圆的左、右焦点,倾斜角为的直线l过点E,且与椭圆交于A,B两点,则的周长为A.10 B.12C.16 D.204.在等差数列中,为其前项和,若.则()A. B.C. D.5.设等比数列的前项和为,且,则()A. B.C. D.6.“冰雹猜想”数列满足:,,若,则()A.4 B.3C.2 D.17.已知圆C1:(x+3)2+y2=1和圆C2:(x-3)2+y2=9,动圆M同时与圆C1及圆C2相外切,求动圆圆心M的轨迹方程()A.x2-=1(x≤-1) B.x2-=1C.x2-=1(x1) D.-x2=18.是数列,,,-17,中的第几项()A第项 B.第项C.第项 D.第项9.曲线的离心率为()A. B.C. D.10.已知抛物线的焦点为,抛物线上的两点,均在第一象限,且,,,则直线的斜率为()A.1 B.C. D.11.已知双曲线的左、右焦点分别为,,过点作直线交双曲线的右支于A,B两点.若,则双曲线的离心率为()A. B.C. D.12.在中,B=60°,,,则AC边的长等于()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.椭圆的右焦点为,过原点的直线与椭圆交于两点、,则的面积的最大值为___________.14.已知函数,若递增数列满足,则实数的取值范围为__________.15.已知p:≤0,q:4x+2x-m≤0,若p是q的充分条件,则实数m的取值范围是________16.设过点K(-1,0)的直线l与抛物线C:y2=4x交于A、B两点,为抛物线的焦点,若|BF|=2|AF|,则cos∠AFB=_______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧棱底面ABCD,,,E为PB中点,F为PC上一点,且(1)求证:;(2)求平面DEF与平面ABCD所成锐二面角的余弦值18.(12分)某企业搜集了某产品的投人成本x(单位:万元)与销售收入y(单位:万元)的六组数据,并将其绘制成如图所示的散点图.根据散点图可以看出,y与x之间是线性相关的.(1)试用最小二乘法求出y关于x的线性回归方程;(2)若投入成本不高于10万元,则可以根据(1)中的回归方程估计产品销售收入;若投入成本高于10万元,投入成本x(单位:万元)与销售收入y(单位:万元)之间的关系式为.若该企业要追求更高的毛利率(毛利率),试问该企业对该产品的投入成本选择收人7万元更好,还是选择12万元更好?说明你的理由.参考公式:回归方程中斜率和截距的最小二乘估计公式分别为.参考数据:.19.(12分).在直角坐标系中,点,直线的参数方程为(为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为,直线与曲线相交于A,B两点(1)求曲线的直角坐标方程和直线的普通方程;(2)若,求值20.(12分)已知为各项均为正数的等比数列,且,.(1)求数列的通项公式;(2)令,求数列前n项和.21.(12分)已知椭圆C与椭圆有相同的焦点,且长轴长为4(1)求C的标准方程;(2)直线,分别经过点与C相切,切点分别为A,B,证明:22.(10分)已知圆.(1)若直线与圆相交于两点,弦的中点为,求直线的方程;(2)若斜率为1的直线被圆截得的弦为,以为直径的圆经过圆的圆心,求直线的方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】A利用向量模长的坐标表示判断;B根据向量平行的判定,是否存在实数使即可判断;C向量数量积的坐标表示求即可判断;D利用向量坐标的线性运算及数量积的坐标表示求即可.【详解】因为,所以A不正确:因为不存在实数使,所以B不正确;因为,故,所以C正确;因为,所以,所以D不正确故选:C2、A【解析】由三角形内角及正弦函数的性质判断、的真假,应用换元法令,结合对勾函数的性质确定的值域即知、的真假,根据各选项复合命题判断真假即可.【详解】由且,可得或,故为假命题,为真命题;令,又,则,故,∵在上递减,∴,故的最大值为.∴为真命题,为假命题;∴为真,为假,为假,为假.故选:A.3、D【解析】利用椭圆的定义即可得到结果【详解】椭圆,可得,三角形的周长,,所以:周长,由椭圆的第一定义,,所以,周长故选D【点睛】本题考查椭圆简单性质的应用,椭圆的定义的应用,三角形的周长的求法,属于基本知识的考查4、C【解析】利用等差数列的性质和求和公式可求得的值.【详解】由等差数列的性质和求和公式可得.故选:C.5、C【解析】根据给定条件求出等比数列公比q的关系,再利用前n项和公式计算得解.【详解】设等比数列的的公比为q,由得:,解得,所以.故选:C6、A【解析】根据题意分别假设为奇数、偶数的情况,求出对应的即可.【详解】由题意知,因为,若为奇数时,,与为奇数矛盾,不符合题意;若为偶数时,,可得,符合题意.不符合故选:A7、A【解析】根据双曲线定义求解【详解】,则根据双曲线定义知的轨迹为的左半支故选:A第II卷(非选择题8、C【解析】利用等差数列的通项公式即可求解【详解】设数列,,,,是首项为,公差d=-4的等差数列{},,令,得故选:C9、C【解析】由曲线方程直接求离心率即可.【详解】由题设,,,∴离心率.故选:C.10、C【解析】作垂直准线于,垂直准线于,作于,结合抛物线定义得出斜率为可求.【详解】如图:作垂直准线于,垂直准线于,作于,因为,,,由抛物线的定义可知:,,,所以,直线斜率为:.故选:C.11、A【解析】根据给定条件结合双曲线定义求出,,再借助余弦定理求出半焦距c即可计算作答.【详解】因,令,,而双曲线实半轴长,由双曲线定义知,,而,于是可得,在等腰中,,令双曲线半焦距为c,在中,由余弦定理得:,而,,,解得,所以双曲线的离心率为.故选:A【点睛】方法点睛:求双曲线的离心率的方法:(1)定义法:通过已知条件列出方程组,求得得值,根据离心率的定义求解离心率;(2)齐次式法:由已知条件得出关于的二元齐次方程,然后转化为关于的一元二次方程求解;(3)特殊值法:通过取特殊值或特殊位置,求出离心率.12、B【解析】根据正弦定理直接计算可得答案.【详解】由正弦定理,,得,故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分析可知点、关于原点对称,可知当、为椭圆短轴的端点时,的面积取得最大值.【详解】椭圆中,,,则,则,由题意可知,、关于原点对称,当、为椭圆短轴的端点时,的面积取得最大值,且最大值为.故答案为:.14、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:15、m≥6【解析】分别求出p,q成立的等价条件,利用p是q的充分条件,转为当0<x≤1时,m大于等于的最大值,求出最值即可确定m的取值范围【详解】由,得0<x≤1,即p:0<x≤1由4x+2x﹣m≤0得4x+2x≤m因为,要使p是q的充分条件,则当0<x≤1时,m大于等于的最大值,令,则在上单调递增,故当时取到最大值6,所以m≥6故答案为:m≥6【点睛】本题主要考查充分条件和必要条件的应用,考查函数的最值,考查转化的思想,属于基础题16、【解析】根据已知设直线方程为与C联立,结合|BF|=2|AF|,利用韦达定理计算可得点A,B的坐标,进而求出向量的坐标,进而利用求向量夹角余弦值的方法,即可得到答案.【详解】令直线的方程为将直线方程代入批物线C:的方程,得令且,所以由抛物线的定义知,由|BF|=2|AF|可知,,则,解得:,,则A,B两点坐标分别为,则则.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)依题意可得,再由,即可得到平面,从而建立空间直角坐标系,利用空间向量法证明即可;(2)利用空间向量法求出二面角的余弦值;【小问1详解】证明:因为平面,平面,平面,则,,又,因为,,平面,所以平面,故以点为坐标原点,建立空间直角坐标系如图所示,则,0,,,0,,,1,,,1,,,0,,,所以,则,所以,故;【小问2详解】解:解:因为,设平面的法向量为,则,即,令,则,,故,因为底面,所以的一个法向量为,所以,故平面与平面夹角的余弦值为18、(1)(2)该企业对该产品的投入成本选择收人12万元更好,理由见解析.【解析】(1)根据公式计算出和,求出线性回归方程;(2)分别求出投入成本7万和12万时的毛利率,比较出大小即可得到答案.【小问1详解】,,,所以y关于x的线性回归方程为;【小问2详解】该企业对该产品的投入成本选择收人12万元更好,理由如下:当时,,此时毛利率为×100%≈34%;当时,,此时毛利率为=40%,因为40%>34%,所以该企业对该产品的投入成本选择收人12万元更好.19、(1)曲线的直角坐标方程为,直线的普通方程为;(2).【解析】(1)根据极坐标与直角坐标互化公式,结合加法消元法进行求解即可;(2)利用直线参数方程的意义,结合一元二次方程根与系数关系进行求解即可.小问1详解】由;;【小问2详解】把直线的参数方程代入曲线的直角坐标方程中,得,,因为在直线上,所以,或而,所以.20、(1);(2).【解析】(1)先通过等比数列的基本量运算求出公比,进而求出通项公式;(2)结合(1)求出,然后根据错位相减法求得答案.【小问1详解】设等比数列公比为q,,,,(负值舍去),所以.【小问2详解】,,所以,解得:.21、(1);(2)证明见解析.【解析】(1)根据共焦点求出参数c,由长轴长求参数a,即可确定C的标准方程;(2)令过切线为,联立椭圆C结合得到关于k的一元二次方程,根据根与系数关系即可证明结论.【小问1详解】由题设,对于椭圆C有,又椭圆的焦点为,则,所以,故C的标准方程.【小问2详解】由题设,直线,的斜率必存在,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《儿童各期保健》课件
- 开题报告:职业教育专业建设与产业发展的谱系图研究
- 中梁小学教学楼新建工程施工组织设计
- 结构长城杯施工组织设计方案
- 开题报告:新时代卓越工程师教育培养研究
- 开题报告:新时代我国乡村教育在地化高质量发展的创新机理与路径研究
- 中考地理总复习阶段填图02 世界地理概况(原卷版)
- 幼儿园教育活动方案的设计专题练习三
- 《责任教育主题班会》课件
- 《SPSS统计分析基础》课件
- 债权债务抵消协议-合同模板
- 【MOOC】电工学-西北工业大学 中国大学慕课MOOC答案
- 第九版内科学糖尿病
- 2024年度高速公路扩建工程合同3篇
- 2023年中国艺术科技研究所招聘笔试真题
- 北师大版(2024新版)七年级上册数学第四章 基本平面图形 单元检测试卷(含答案)
- 2024年6月第2套英语六级真题
- 金属非金属矿山安全生产实务注册安全工程师考试(初级)试题与参考答案
- 护理责任组长年终总结
- 抗菌药物分级管理在临床中的应用
- 07SG531钢网架设计图集
评论
0/150
提交评论