2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题含解析_第1页
2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题含解析_第2页
2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题含解析_第3页
2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题含解析_第4页
2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届沧州市重点中学高二数学第一学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将一枚骰子连续抛两次,得到正面朝上的点数分别为、,记事件A为“为偶数”,事件B为“”,则的值为()A. B.C. D.2.抛物线的准线方程是A.x=1 B.x=-1C. D.3.已知命题,;命题,,那么下列命题为假命题的是()A. B.C. D.4.已知直线的倾斜角为,在轴上的截距为,则此直线的方程为()A. B.C. D.5.已知是抛物线上的一个动点,是圆上的一个动点,是一个定点,则的最小值为A. B.C. D.6.某三棱锥的三视图如图所示,则该三棱锥内切球的表面积为A.B.C.D.7.已知圆上有三个点到直线的距离等于1,则的值为()A. B.C. D.18.已知向量,,若,则()A.1 B.C. D.29.已知抛物线,过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的横坐标为3,则该抛物线的准线方程为()A. B.C. D.10.已知、,则直线的倾斜角为()A. B.C. D.11.数列,,,,…,是其第()项A.17 B.18C.19 D.2012.已知,分别是圆和圆上的动点,点在直线上,则的最小值是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知递增数列共有2021项,且各项均不为零,,如果从中任取两项,当时,仍是数列中的项,则的范围是________________,数列的所有项和________14.在的展开式中项的系数为______.(结果用数值表示)15.曲线在点处的切线方程为_________16.直线l过抛物线的焦点F,与抛物线交于A,B两点,若,则直线l的斜率为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知圆关于直线对称,且圆心C在轴上.(1)求圆C的方程;(2)直线与圆C交于A、B两点,若为等腰直角三角形,求直线的方程.18.(12分)已知数列中,.(1)证明是等比数列,并求通项公式;(2)设,记数列的前n项和为,求使恒成立的最小的整数k.19.(12分)已知正三棱柱底面边长为,是上一点,是以为直角顶点的等腰直角三角形(1)证明:是中点;(2)求点到平面的距离20.(12分)在平面直角坐标系xOy中,椭圆C的参数方程为(θ为参数),直线l的参数方程为(t为参数)(Ⅰ)写出椭圆C的普通方程和直线l的倾斜角;(Ⅱ)若点P(1,2),设直线l与椭圆C相交于A,B两点,求|PA|·|PB|的值21.(12分)已知a,b,c分别为△ABC三个内角A,B,C的对边,,,△ABC的面积为(1)求a;(2)若D为BC边上一点,且∠BAD=,求∠ADC的正弦值22.(10分)在直角坐标系中,以坐标原点O为圆心的圆与直线相切.(1)求圆O的方程;(2)设圆O交x轴于A,B两点,点P在圆O内,且是、的等比中项,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】利用条件概率的公式求解即可.【详解】根据题意可知,若事件为“为偶数”发生,则、两个数均为奇数或均为偶数,其中基本事件数为,,,,,,,,,,,,,,,,,,一共个基本事件,∴,而A、同时发生,基本事件有当一共有9个基本事件,∴,则在事件A发生的情况下,发生的概率为,故选:2、C【解析】先把抛物线方程整理成标准方程,进而求得p,再根据抛物线性质得出准线方程【详解】解:整理抛物线方程得,∴p=∵抛物线方程开口向上,∴准线方程是y=﹣故答案为C【点睛】本题主要考查抛物线的标准方程和简单性质.属基础题3、B【解析】由题设命题的描述判断、的真假,再判断其复合命题的真假即可.【详解】对于命题,仅当时,故为假命题;对于命题,由且开口向上,故为真命题;所以为真命题,为假命题,综上,为真,为假,为真,为真.故选:B4、D【解析】求出直线的斜率,利用斜截式可得出直线的方程.【详解】直线的斜率为,由题意可知,所求直线的方程为.故选:D.5、A【解析】恰好为抛物线的焦点,等于到准线的距离,要想最小,过圆心作抛物线的准线的垂线交抛物线于点,交圆于,最小值等于圆心到准线的距离减去半径4-1=.考点:1.抛物线的定义;2.圆中的最值问题;6、A【解析】由三视图可知该几何体是一个三棱锥,根据等积法求出几何体内切球的半径,再计算内切球的表面积【详解】解:由三视图知该几何体是一个三棱锥,放入棱长为2的正方体中,如图所示:设三棱锥内切球的半径为,则由等体积法得,解得,所以该三棱锥内切球的表面积为故选:A【点睛】本题考查了由三视图求三棱锥内切球表面积的应用问题,属于中档题7、A【解析】求出圆心和半径,由题意可得圆心到直线的距离,列方程即可求得的值.【详解】由圆可得圆心,半径,因为圆上有三个点到直线的距离等于1,所以圆心到直线的距离,可得:,故选:A.8、B【解析】由向量平行,先求出的值,再由模长公式求解模长.【详解】由,则,即则,所以则故选:B9、B【解析】设,进而根据题意,结合中点弦的问题得,进而再求解准线方程即可.【详解】解:根据题意,设,所以①,②,所以,①②得:,即,因为直线AB的斜率为1,线段AB的中点的横坐标为3,所以,即,所以抛物线,准线方程为.故选:B10、B【解析】设直线的倾斜角为,利用直线的斜率公式求出直线的斜率,进而可得出直线的倾斜角.【详解】设直线的倾斜角为,由斜率公式可得,,因此,.故选:B.11、D【解析】根据题意,分析归纳可得该数列可以写成,,,……,,可得该数列的通项公式,分析可得答案.【详解】解:根据题意,数列,,,,…,,可写成,,,……,,对于,即,为该数列的第20项;故选:D.【点睛】此题考查了由数列的项归纳出数列的通项公式,考查归纳能力,属于基础题.12、B【解析】由已知可得,,求得关于直线的对称点为,则,计算即可得出结果.【详解】由题意可知圆的圆心为,半径,圆的圆心为,半径设关于直线的对称点为,则解得,则因为,分别在圆和圆上,所以,,则因为,所以故选:B.二、填空题:本题共4小题,每小题5分,共20分。13、①.②.1011【解析】根据题意得到,得到,,,,进而得到,从而即可求得的值.【详解】由题意,递增数列共有项,各项均不为零,且,所以,所以的范围是,因为时,仍是数列中的项,即,且上述的每一项均在数列中,所以,,,,即,所以,所以.故答案为:;.14、【解析】先求解出该二项式展开式的通项,然后求解出满足题意的项数值,带入通项即可求解出展开式的系数.【详解】展开式通项为,由题意,令,解得,,所以项的系数为.故答案为:.15、【解析】求导,求出切线斜率,用点斜式写出直线方程,化简即可.【详解】,曲线在点处的切线方程为,即故答案为:16、【解析】如图,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,利用在直角三角形中,求得,从而得出直线的斜率【详解】解:如图,当在第一象限时,设,两点的抛物线的准线上的射影分别为,,过作的垂线,在三角形中,等于直线的倾斜角,其正切值即为值,由抛物线的定义可知:设,则,,,在直角三角形中,,所以,则直线的斜率;当在第四象限时,同理可得,直线的斜率,综上可得直线l的斜率为;故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解析】(1)根据题意得到等量关系,求出,,进而求出圆的方程;(2)结合第一问求出的圆心和半径,及题干条件得到圆心到直线的距离为,列出方程,求出的值,进而得到直线方程【小问1详解】由题意得:直线过圆心,即,且,解得:,,所以圆C的方程为;【小问2详解】的圆心为,半径为2,由题意得:,圆心到直线的距离为,即,解得:或,所以直线的方程为:或.18、(1)证明见解析,(2)4【解析】(1)由,得到,利用等比数列的定义求解;(2)由(1)得到,然后利用错位相减法求解.【小问1详解】证明:由,得,∴,∴数列是以3为公比,以为首项的等比数列,∴,即.【小问2详解】由题意得.,两式相减得:,因为,所以,所以使恒成立的最小的整数k为4.19、(1)证明见解析;(2).【解析】(1)证明出平面,可得出,再利用等腰三角形的几何性质可证得结论成立;(2)计算出三棱锥的体积以及的面积,利用等体积法可求得点到平面的距离.【小问1详解】证明:在正三棱柱,平面,平面,则,因为是以为直角顶点的等腰直角三角形,则,,则平面,平面,所以,,因为为等边三角形,故点为的中点.【小问2详解】解:因为是边长为的等边三角形,则,平面,平面,则,即,所以,,,,设点到平面的距离为,,,解得.因此,点到平面距离为.20、(I)见解析;(Ⅱ).【解析】(Ⅰ)利用平方法消去θ得到椭圆C的普通方程为,根据直线参数方程的几何意义求出直线的斜率,从而可得结果;(Ⅱ)把直线的方程,代入中,利用直线参数方程的几何意义求出直线的斜率结合韦达定理可得结果.试题解析:(Ⅰ)消去θ得到椭圆C的普通方程为∵直线的斜率为,∴直线l的倾斜角为(Ⅱ)把直线的方程,代入中,得即,∴t1·t2=4,即|PA|·|PB|=421、(1)(2)【解析】(1)利用面积公式及余弦定理可求解;(2)由正弦定理得到,再运用同角函数的关系得到,最后运用正弦的两角和公式求解即可.【小问1详解】∵,,,∴由余弦定理:,∴【小问2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论