版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省武昌市2025届高一上数学期末学业水平测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知是锐角三角形,,,则A. B.C. D.与的大小不能确定2.设,则()A.a>b>c B.a>c>bC.c>a>b D.c>b>a3.同时掷两枚骰子,所得点数之和为的概率为A. B.C. D.4.已知集合,集合,则()A.0 B.C. D.5.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥体积为定值D.6.已知扇形的面积为9,半径为3,则扇形的圆心角(正角)的弧度数为()A.1 B.C.2 D.7.如图,PO是三棱锥P-ABC底面ABC的垂线,垂足为O①若PA⊥BC,PB⊥AC,则点O是△ABC的垂心;②若PA=PB=PC,则点O是△ABC的外心;③若∠PAB=∠PAC,∠PBA=∠PBC,则点O是△ABC的内心;④过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则点O是△ABC的重心以上推断正确的个数是()A.1 B.2C.3 D.48.已知,且,则()A. B.C. D.9.已知,,,则的边上的高线所在的直线方程为()A. B.C. D.10.已知函数,若,则x的值是()A.3 B.9C.或1 D.或3二、填空题:本大题共6小题,每小题5分,共30分。11.已知圆锥的侧面展开图是一个半径为,圆心角为的扇形,则此圆锥的高为________.12.函数的反函数是___________.13.对于函数和,设,,若存在、,使得,则称与互为“零点关联函数”.若函数与互为“零点关联函数”,则实数的取值范围为()A. B. C. D.14.已知关于不等式的解集为,则的最小值是___________.15.若函数在区间上有两个不同的零点,则实数a的取值范围是_________.16.空间直角坐标系中,点A(﹣1,0,1)到原点O的距离为_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,弹簧挂着的小球做上下振动,它在(单位:)时相对于平衡位置(静止时的位置)的高度(单位:)由关系式确定,其中,,.在一次振动中,小球从最高点运动至最低点所用时间为.且最高点与最低点间的距离为(1)求小球相对平衡位置的高度(单位:)和时间(单位:)之间的函数关系;(2)小球在内经过最高点的次数恰为50次,求的取值范围18.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点(Ⅰ)求证:面;(Ⅱ)求点到面的距离19.设函数(1)若是偶函数,求k的值(2)若存在,使得成立,求实数m的取值范围;(3)设函数若在有零点,求实数的取值范围20.已知为坐标原点,,,若(1)求函数的对称轴方程;(2)当时,若函数有零点,求的范围.21.已知函数是R上的奇函数.(1)求a的值,并判断的单调性;(2)若存在,使不等式成立,求实数b的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】分析:利用作差法,根据“拆角”技巧,由三角函数的性质可得.详解:将,代入,,可得,,由于是锐角三角形,所以,,,,所以,,综上,知.故选A点睛:本题主要考查三角函数的性质,两角和与差的三角函数以及作差法比较大小,意在考查学生灵活运用所学知识解答问题的能力,属于中档题.解答本题的关键是运用好“拆角”技巧.2、C【解析】分别求出的范围即可比较.【详解】,,,,,.故选:C.3、A【解析】本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6种结果,而满足条件的事件是两个点数之和是5,列举出有4种结果,根据概率公式得到结果.【详解】由题意知,本题是一个古典概型,试验发生包含的事件是同时掷两枚骰子,共有6×6=36种结果,而满足条件的事件是两个点数之和是5,列举出有(1,4)(2,3)(3,2)(4,1),共有4种结果,根据古典概型概率公式得到P=.【点睛】古典概型要求能够列举出所有事件和满足条件的事件发生的个数,本题可以列举出所有事件,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体4、B【解析】由集合的表示方法以及交集的概念求解.【详解】由题意,集合,,∴.故选:B5、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误.选D6、C【解析】利用扇形面积公式即可求解.【详解】设扇形的圆心角的弧度数为,由题意得,得.故选:C.7、C【解析】①由题意得出AO⊥BC,BO⊥BC,点O是△ABC的垂心;②若PA=PB=PC,则AO=BO=CO,点O是△ABC的外心;③由题意得出AO是∠BAC的平分线,BO是∠ABC的平分线,O是△ABC的内心;④若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心【详解】对于①,PO⊥底面ABC,∴PO⊥BC,又PA⊥BC,∴BC⊥平面PAO,∴AO⊥BC;同理PB⊥AC,得出BO⊥BC,∴点O是△ABC的垂心,①正确;对于②,若PA=PB=PC,由此推出Rt△PAO≌Rt△PBO≌Rt△PCO,∴AO=BO=CO,点O是△ABC的外心,②正确;对于③,若∠PAB=∠PAC,且PO⊥底面ABC,则AO是∠BAC的平分线,同理∠PBA=∠PBC时BO是∠ABC平分线,∴点O是△ABC的内心,③正确;对于④,过点P分别做边AB,BC,AC的垂线,垂足分别为E,F,G,若PE=PF=PG,则OE=OF=OG,点O是△ABC的内心,④错误综上,正确的命题个数是3故选C【点睛】本题主要考查了空间中的直线与平面的垂直关系应用问题,是中档题8、B【解析】利用角的关系,再结合诱导公式和同角三角函数基本关系式,即可求解.【详解】,,.故选:B9、A【解析】先计算,得到高线的斜率,又高线过点,计算得到答案.【详解】,高线过点∴边上的高线所在的直线方程为,即.故选【点睛】本题考查了高线的计算,利用斜率相乘为是解题的关键.10、A【解析】分段解方程即可.【详解】当时,,解得(舍去);当时,,解得或(舍去).故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】设此圆的底面半径为,高为,母线为,根据底面圆周长等于展开扇形的弧长,建立关系式解出,再根据勾股定理得,即得此圆锥高的值【详解】设此圆的底面半径为,高为,母线为,因为圆锥的侧面展开图是一个半径为,圆心角为的扇形,所以,得,解之得,因此,此圆锥的高,故答案为:【点睛】本题给出圆锥的侧面展开图扇形的半径和圆心角,求圆锥高的大小,着重考查了圆锥的定义与性质和旋转体侧面展开等知识,属于基础题.12、;【解析】根据指数函数与对数函数互为反函数直接求解.【详解】因为,所以,即的反函数为,故答案为:13、C【解析】先求得函数的零点为,进而可得的零点满足,由二次函数的图象与性质即可得解.【详解】由题意,函数单调递增,且,所以函数的零点为,设的零点为,则,则,由于必过点,故要使其零点在区间上,则或,即或,所以,故选:C.【点睛】关键点点睛:解决本题的关键是将题目条件转化为函数零点的范围,再由二次函数的图象与性质即可得解.14、【解析】由题知,进而根据基本不等式求解即可.【详解】解:因为关于的不等式的解集为,所以是方程的实数根,所以,因为,所以,当且仅当,即时等号成立,所以的最小值是故答案为:15、【解析】首先根据函数的解析式确定,再利用换元法将函数在区间上有两个不同的零点的问题,转化为方程区间上有两个不同根的问题,由此列出不等式组解得答案.【详解】函数在区间上有两个不同的零点,则,故由可知:,当时,,显然不符合题意,故,又函数在区间上有两个不同的零点,等价于在区间上有两个不同的根,设,则函数在区间上有两个不同的根,等价于在区间上有两个不同的根,由得,要使区间上有两个不同的根,需满足a2-5a+1>06a故答案为:16、【解析】由空间两点的距离公式计算可得所求值.【详解】点到原点的距离为,故答案为:.【点睛】本题考查空间两点的距离公式的运用,考查运算能力,是一道基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),;(2)【解析】(1)首先根据题意得到,,从而得到,(2)根据题意,当时,小球第一次到达最高点,从而得到,再根据周期为,即可得到.【详解】(1)因为小球振动过程中最高点与最低点的距离为,所以因为在一次振动中,小球从最高点运动至最低点所用时间为,所以周期为2,即,所以所以,(2)由题意,当时,小球第一次到达最高点,以后每隔一个周期都出现一次最高点,因为小球在内经过最高点的次数恰为50次,所以因为,所以,所以的取值范围为(注:的取值范围不考虑开闭)18、(Ⅰ)证明见解析;(Ⅱ)【解析】(1)取中点,连结,,∵,分别为,的中点,∴可证得,,∴四边形是平行四边形,∴,又∵平面,平面,∴面(2)∵,∴19、(1),(2),(3)【解析】(1)由偶函数的定义可得,,列方程可求出的值;(2)由,可得,分离出,换元后利用二次函数的性质求解即可;(3)结合已知条件,代入可求,然后结合在有零点,利用换元法,结二次函数的性质求解.【详解】解:(1)因为是偶函数,所以,即,,解得;(2)由,可得,则,即存在,使成立,令,则,因为,所以,令,则对称轴为直线,所以在单调递增,所以时,取得最大值,即,所以,即实数m的取值范围为;(3),则,所以,设,当时,函数为增函数,则,若在上有零点,即在上有解,即,,因为函数在为增函数,所以,所以取值范围为.【点睛】关键点点睛:此题考查函数奇偶性的应用,考查二次函数性质的应用,解题的关键是将转化为,然后利用换元法结合二次函数的性质求解即可,考查数学转化思想,属于中档题20、(1),(2)【解析】(1)先利用数量积的坐标表示以及三角恒等变换化简三角函数得,再根据正弦函数的对称性即可得出结论;(2)由题意得有解,求出函数在区间上的值域即可得出结论【详解】解:(1),,,对称轴方程为,即;(2),有零点,,,,,,【点睛】本题主要考查三角函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手房意向金合同范本标准版
- 2024年度工程施工居间合同3篇
- 甲供材料合同协议书范本
- 2024版软件翻译服务合同2篇
- 酒店房屋租赁合同范本2篇
- 商业房屋租赁合同
- 物业公司装修工程合同范本
- 完整版经营转让协议标准版可打印
- 《钉钉使用教程》课件
- 采购单价下调报告范文
- ISO15614-1 2017 金属材料焊接工艺规程及评定(中文版)
- 2024年上海奉贤投资(集团)限公司招聘3人历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 2024年甘孜州州属事业单位考调工作人员高频考题难、易错点模拟试题(共500题)附带答案详解
- 《10kV带电作业用绝缘斗臂车》
- 海河杯创优专项方案
- 数字化转型培训课件
- 湖南省医疗机构卫生监督量化分级评分表
- (2024年)大学生网络安全常识PPT课件模板
- 《香格里拉并不遥远课件》初中音乐苏少课标版-八年级上册课件3663
- 主播人设方案
- JBT 14646-2023 低蠕变填充改性聚四氟乙烯垫片 (正式版)
评论
0/150
提交评论