![河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题含解析_第1页](http://file4.renrendoc.com/view12/M06/2E/39/wKhkGWcMGkWACDpaAAIGsgEDf9Q472.jpg)
![河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题含解析_第2页](http://file4.renrendoc.com/view12/M06/2E/39/wKhkGWcMGkWACDpaAAIGsgEDf9Q4722.jpg)
![河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题含解析_第3页](http://file4.renrendoc.com/view12/M06/2E/39/wKhkGWcMGkWACDpaAAIGsgEDf9Q4723.jpg)
![河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题含解析_第4页](http://file4.renrendoc.com/view12/M06/2E/39/wKhkGWcMGkWACDpaAAIGsgEDf9Q4724.jpg)
![河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题含解析_第5页](http://file4.renrendoc.com/view12/M06/2E/39/wKhkGWcMGkWACDpaAAIGsgEDf9Q4725.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市林州一中2025届高二数学第一学期期末达标检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,是双曲线的左、右焦点,点A是的左顶点,为坐标原点,以为直径的圆交的一条渐近线于、两点,以为直径的圆与轴交于两点,且平分,则双曲线的离心率为()A. B.2C. D.32.在数列中,,则此数列最大项的值是()A.102 B.C. D.1083.设变量x,y满足约束条件则目标函数的最小值为()A.3 B.1C.0 D.﹣14.有一个圆锥形铅垂,其底面直径为10cm,母线长为15cm.P是铅垂底面圆周上一点,则关于下列命题:①铅垂的侧面积为150cm2;②一只蚂蚁从P点出发沿铅垂侧面爬行一周、最终又回到P点的最短路径的长度为cm.其中正确的判断是()A.①②都正确 B.①正确、②错误C.①错误、②正确5.的展开式中的系数是()A. B.C. D.6.已知函数的图象如图所示,则不等式的解集为()A. B.C. D.7.圆心在x轴负半轴上,半径为4,且与直线相切的圆的方程为()A. B.C. D.8.若,则()A.1 B.2C.4 D.89.2021年6月17日9时22分,搭载神舟十二号载人飞船的长征二号F遥十二运载火箭,在酒泉卫星发射中心点火发射.此后,神舟十二号载人飞船与火箭成功分离,进入预定轨道,并快速完成与“天和”核心舱的对接,聂海胜、刘伯明、汤洪波3名宇航员成为核心舱首批“入住人员”,并在轨驻留3个月,开展舱外维修维护,设备更换,科学应用载荷等一系列操作.已知神舟十二号飞船的运行轨道是以地心为焦点的椭圆,设地球半径为R,其近地点与地面的距离大约是,远地点与地面的距离大约是,则该运行轨道(椭圆)的离心率大约是()A. B.C. D.10.如图,修建一条公路需要一段环湖弯曲路段与两条直道平滑连接(相切).已知环湖弯曲路段为某三次函数图象的一部分,则该函数的解析式为()A.B.C.D.11.已知随机变量X,Y满足,,且,则的值为()A.0.2 B.0.3C.0..5 D.0.612.已知定义在上的函数满足:,且,则的解集为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列公差不为0,且,,等比数列,则_________.14.无穷数列满足:只要必有,则称为“和谐递进数列”,已知为“和谐递进数列”,且前四项成等比数列,,,则__________,若数列前项和为,则__________.15.设函数为奇函数,当时,,则_______16.已知直线l是抛物线()的准线,半径为的圆过抛物线的顶点O和焦点F,且与l相切,则抛物线C的方程为___________;若A为C上一点,l与C的对称轴交于点B,在中,,则的值为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列的前n项和为,且,数列(1)求和的通项公式;(2)设数列的前n项和为,证明:18.(12分)已知命题p:“,”为假命题,命题q:“实数满足”.若是真命题,是假命题,求的取值范围19.(12分)在中,内角A、B、C的对边分别为a、b、c,满足(1)求A的大小;(2)若,的面积为,求的周长20.(12分)平面直角坐标系中,曲线与坐标轴交点都在圆上.(1)求圆的方程;(2)圆与直线交于,两点,在圆上是否存在一点,使得四边形为菱形?若存在,求出此时直线的方程;若不存在,说明理由.21.(12分)某企业为了解下属某部门对本企业职工的服务情况,随机访问50名职工,根据这50名职工对该部门的评分,绘制频率分布直方图(如图所示),其中样本数据分组区间为(1)求频率分布直方图中的值;(2)估计该企业的职工对该部门评分不低于80的概率;(3)从评分在的受访职工中,随机抽取2人,求此2人评分都在的概率.22.(10分)在数列中,,是与的等差中项,(1)求证:数列是等差数列(2)令,求数列的前项的和
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】由直径所对圆周角是直角,结合双曲线的几何性质和角平分线定义可解.【详解】由圆的性质可知,,,所以,因为,所以又因为平分,所以,由,得,所以,即所以故选:B2、D【解析】将将看作一个二次函数,利用二次函数的性质求解.【详解】将看作一个二次函数,其对称轴为,开口向下,因为,所以当时,取得最大值,故选:D3、C【解析】线性规划问题,作出可行域后,根据几何意义求解【详解】作出可行域如图所示,,数形结合知过时取最小值故选:C4、C【解析】根据圆锥的侧面展开图为扇形,由扇形的面积公式计算即可判断①,在展开图中可知沿着爬行即为最短路径,计算即可判断②.【详解】直径为10cm,母线长为15cm.底面圆周长为.将其侧面展开后得到扇形半径为cm,弧长为,则扇形面积为,①错误.将其侧面展开,则爬行最短距离为,由弧长公式得展开后扇形弧度数为,作,,又,,cm,②正确.故选:C5、B【解析】根据二项式定理求出答案即可.【详解】的展开式中的系数是故选:B6、D【解析】原不等式等价于,根据的图象判断函数的单调性,可得和的解集,再分情况或解不等式即可求解.【详解】由函数的图象可知:在和上单调递增,在上单调递减,所以当时,;当时,;由可得,所以或,即或,解得:或,所以原不等式的解集为:,故选:D.7、A【解析】根据题意,设圆心为坐标为,,由直线与圆相切的判断方法可得圆心到直线的距离,解得的值,即可得答案【详解】根据题意,设圆心为坐标为,,圆的半径为4,且与直线相切,则圆心到直线的距离,解得:或13(舍,则圆的坐标为,故所求圆的方程为,故选:A8、D【解析】由题意结合导数的运算可得,再由导数的概念即可得解.【详解】由题意,所以,所以.故选:D.9、A【解析】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,根据题意列出方程组,解方程组即可.【详解】以运行轨道长轴所在直线为x轴,地心F为右焦点建立平面直角坐标系,设椭圆方程为,其中,根据题意有,,所以,,所以椭圆的离心率故选:A10、D【解析】由题设,“需要一段环湖弯曲路段与两条直道平滑连接(相切)“可得出此两点处的切线正是两条直道所在直线,由此规律验证四个选项即可得出答案【详解】由函数图象知,此三次函数在上处与直线相切,在点处与相切,下研究四个选项中函数在两点处的切线A:,将0代入,此时导数为,与点处切线斜率为矛盾,故A错误B:,将0代入,此时导数为,不为,故B错误;C:,将2代入,此时导数为,与点处切线斜率为3矛盾,故C错误;D:,将0,2代入,解得此时切线的斜率分别是,3,符合题意,故D正确;故选:D.11、D【解析】利用正态分布的计算公式:,【详解】且又故选:D12、A【解析】令,利用导数可判断其单调性,从而可解不等式.【详解】设,则,故为上的增函数,而可化为即,故即,所以不等式的解集为,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】设等差数列的公差为,由,,等比数列,可得,则的值可求【详解】解:设等差数列的公差为,,,等比数列,,则,得,故答案为:14、①.2②.7578【解析】根据前四项成等比数列及定义可求得,根据新定义得数列是周期数列,从而易求得【详解】∵成等比数列,,,又,为“和谐递进数列”,,,,,…,数列是周期数列,周期为4,故答案为:2,757815、【解析】由奇函数的定义可得,代入解析式即可得解.【详解】函数为奇函数,当时,,所以.故答案为-1.【点睛】本题主要考查了奇函数的求值问题,属于基础题.16、①.②.【解析】(1)由题意得:圆的圆心横坐标为,半径为,列方程,即可得到答案;(2)由正弦定理得,从而求得直线的方程,求出点的坐标,即可得到答案;【详解】由题意得:圆的圆心横坐标为,半径为,,抛物线C的方程为;设到准线的距离为,,,,,代入,解得:,,,故答案为:;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),(2)证明见解析【解析】(1)根据可得,从而可得;(2)利用错位相减法可得,从而可得,又,即可证明不等式成立.【小问1详解】解:∵,∴当时,,当时,,∴,经检验,也符合,∴,;【小问2详解】证明:因为,∴,∴∴,又∵,∴,所以18、或【解析】先假设命题、为真,分别求得实数的取值范围,再由命题、具体的真假,取实数的取值范围或其补集,最终确定实数的取值范围.【详解】若命题p为真,则“,”为假命题则,恒成立∴恒成立,即∴,∴.若命题q为真,则,即∴∴∵是真命题,是假命题∴命题、必为一真一假.①当p真q假时,∴;②当p假q真时,∴.综上所述:a的取值范围是或.19、(1)(2)【解析】(1)通过正弦定理将边化为角的关系,可得,进而可得结果;(2)由面积公式得,结合余弦定理得,进而得结果.【小问1详解】∵∴由正弦定理,得∴∵,∴,故【小问2详解】由(1)知,∵∴∵由余弦定理知,∴,故∴,故∴的周长为20、(1);(2)存在,直线方程为或.【解析】(1)利用待定系数法即求;(2)利用直线与圆的位置关系可得,然后利用菱形的性质可得圆心到直线的距离,即得.【小问1详解】曲线与轴的交点为,与轴的交点为,,设圆的方程为,则,解得.∴圆的方程为;【小问2详解】∵圆与直线交于,两点,圆化为,圆心坐标为,半径为.∴圆心到直线的距离,解得.假设存在点,使得四边形为菱形,则与互相平分,∴圆心到直线的距离,即,解得,经验证满足条件.∴存在点,使得四边形为菱形,此时的直线方程为或.21、(1)0.006;(2);(3).【解析】(1)在频率分布直方图中,由频率总和即所有矩形面积之和为,可求;(2)在频率分布直方图中先求出50名受访职工评分不低于80的频率为,由频率与概率关系可得该部门评分不低于80的概率的估计值为;(3)受访职工评分在[50,60)的有3人,记为,受访职工评分在[40,50)的有2人,记为,列出从这5人中选出两人所有基本事件,即可求相应的概率.【详解】(1)因为,所以(2)由所给频率分布直方图知,50名受访职工评分不低于80的频率为,所以该企业职工对该部门评分不低于80的概率的估计值为(3)受访职工评分在[50,60)的有:50×0.006×10=3(人),即为;受访职工评分在[40,50)的有:50×0.004×10=2(人),即为.从这5名受访职工中随机抽取2人,所有可能的结果共有10种,它们是又因为所抽取2人的评分都在[40,50)的结果有1种,即,故所求的概率为【点睛】本题考查频率分布直方图、概率与频率关系、古典概型,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省日照市高三下学期3月模拟考试语文试题(含答案)
- 工程车运输简单合同
- 2025合同模板化工产品购销合同范本
- 洗煤厂承包合同
- 商铺个人租房合同
- 职称聘任合同书
- 演讲稿格式及范文二十-多篇
- 提升学习能力
- 农产品产销对接合作合同
- 二手房独家代理合同
- 《共情的力量》课件
- 2022年中国电信维护岗位认证动力专业考试题库大全-上(单选、多选题)
- 《电气作业安全培训》课件
- 水平二(四年级第一学期)体育《小足球(18课时)》大单元教学计划
- 《关于时间管理》课件
- 医药高等数学智慧树知到课后章节答案2023年下浙江中医药大学
- 城市道路智慧路灯项目 投标方案(技术标)
- 水泥采购投标方案(技术标)
- 医院招标采购管理办法及实施细则(试行)
- 初中英语-Unit2 My dream job(writing)教学设计学情分析教材分析课后反思
- 广州市劳动仲裁申请书
评论
0/150
提交评论