




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届上海市宝山区宝山中学数学高一上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知,则三者的大小关系是A. B.C. D.2.已知,那么()A. B.C. D.3.已知函数为R上的偶函数,若对于时,都有,且当时,,则等于()A.1 B.-1C. D.4.()A. B.C. D.15.设,则“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.对于每个实数x,设取两个函数中的较小值.若动直线y=m与函数的图象有三个不同的交点,它们的横坐标分别为,则的取值范围是()A. B.C. D.7.如图,正方体的棱长为1,动点在线上,,分别是,的中点,则下列结论中错误的是()A. B.平面C.三棱锥的体积为定值 D.存在点,使得平面平面8.下列命题中,错误的是()A.平行于同一条直线的两条直线平行B.已知直线垂直于平面内的任意一条直线,则直线垂直于平面C.已知直线平面,直线,则直线D.已知为直线,、为平面,若且,则9.函数的零点所在区间为()A. B.C. D.10.对于实数,“”是“”的A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件二、填空题:本大题共6小题,每小题5分,共30分。11.已知半径为3的扇形面积为,则这个扇形的圆心角为________12.设向量,若⊥,则实数的值为______13.若幂函数是偶函数,则___________.14.在三棱柱中,各棱长相等,侧棱垂直于底面,点是侧面的中心,则与平面所成角的大小是______.15.边长为2的正方形ABCD沿对角线BD折成直二面角,则折叠后AC的长为________16.请写出一个最小正周期为,且在上单调递增的函数__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数f(x)=x2-ax+2(1)若f(x)≤-4的解集为[2,b],求实数a,b的值;(2)当时,若关于x的不等式f(x)≥1-x2恒成立,求实数a的取值范围18.已知函数(1)求的最大值,并写出取得最大值时自变量的集合;(2)把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,求在上的单调递增区间.19.如图,四棱锥中,底面为菱形,平面.(1)证明:平面平面;(2)设,,求到平面的距离.20.已知函数是奇函数,且;(1)判断函数在区间的单调性,并给予证明;(2)已知函数(且),已知在的最大值为2,求的值21.已知函数(1)求当f(x)取得最大值时,x的取值集合;(2)完成下列表格并在给定的坐标系中,画出函数f(x)在上的图象.xy
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】a=log30.2<0,b=30.2>1,c=0.30.2∈(0,1),∴a<c<b故选C点睛:这个题目考查的是比较指数和对数值的大小;一般比较大小的题目,常用的方法有:先估算一下每个数值,看能否根据估算值直接比大小;估算不行的话再找中间量,经常和0,1,-1比较;还可以构造函数,利用函数的单调性来比较大小.2、B【解析】先利用指数函数单调性判断b,c和1大小关系,再判断a与1的关系,即得结果.【详解】因为在单调递增,,故,即,而,故.故选:B.3、A【解析】由已知确定函数的递推式,利用递推式与奇偶性计算即可【详解】当时,,则,所以当时,,所以又是偶函数,,所以故选:A4、B【解析】先利用诱导公式把化成,就把原式化成了两角和余弦公式,解之即可.【详解】由可知,故选:B5、B【解析】分别求出两个不等式的的取值范围,根据的取值范围判断充分必要性.【详解】等价于,解得:;等价于,解得:,可以推出,而不能推出,所以是的必要不充分条件,所以“”是“”的必要不充分条件故选:B6、C【解析】如图,作出函数的图象,其中,设与动直线的交点的横坐标为,∵图像关于对称∴∵∴∴故选C点睛:本题首先考查新定义问题,首先从新定义理解函数,为此解方程,确定分界点,从而得函数的具体表达式,画出函数图象,通过图象确定三个数中具有对称关系,,因此只要确定的范围就能得到的范围.7、D【解析】对A,根据中位线的性质判定即可.对B,利用平面几何方法证明,再证明平面即可.对C,根据三棱锥以为底,且同底高不变,故体积不变判定即可.对D,根据与平面有交点判定即可.【详解】在A中,因为分别是的中点,所以,故A正确;在B中,因为,,故,故.故,又有,所以平面,故B正确;在C中,三棱锥以面为底,则高是定值,所以三棱锥的体积为定值,故C正确.在D中,与平面有交点,所以不存在点,使得平面平面,故D错误.故选:D.【点睛】方法点睛:本题考查空间点线面位置关系,考查棱锥的体积,考查线面垂直的判定定理的应用,判断线面垂直的方法主要有:
线面垂直的判定定理,直线与平面内的两条相交直线垂直;
面面垂直的性质定理,若两平面互相垂直,则在一个平面内垂直于交线的垂直于另一个平面;
线面垂直的性质定理,两条平行线中有一条与平面垂直,则另一条也与平面垂直;
面面平行的性质定理,直线垂直于两平行平面之一,必然垂直于另一个平面8、C【解析】由平行线的传递性可判断A;由线面垂直的定义可判断B;由线面平行的定义可判断C;由线面平行的性质和线面垂直的性质,结合面面垂直的判定定理,可判断D.【详解】解:由平行线的传递性可得,平行于同一条直线的两条直线平行,故A正确;由线面垂直的定义可得,若直线垂直于平面内的任意一条直线,则直线垂直于平面,故B正确;由线面平行的定义可得,若直线平面,直线,则直线或,异面,故C错误;若,由线面平行的性质,可得过的平面与的交线与平行,又,可得,结合,可得,故D正确.故选:C.9、B【解析】由零点存在定理判定可得答案.【详解】因为在上单调递减,且,,所以的零点所在区间为故选:B10、B【解析】由于不等式的基本性质,“a>b”⇒“ac>bc”必须有c>0这一条件.解:主要考查不等式的性质.当c=0时显然左边无法推导出右边,但右边可以推出左边.故选B考点:不等式的性质点评:充分利用不等式的基本性质是推导不等关系的重要条件二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由扇形的面积公式直接求解.【详解】由扇形面积公式,可得圆心角,故答案为:.【点睛】(1)在弧度制下,计算扇形的面积和弧长比在角度制下更方便、简捷(2)求扇形面积的最值应从扇形面积出发,在弧度制下使问题转化为关于α的不等式或利用二次函数求最值的方法确定相应最值.12、【解析】∵,∴,,又⊥∴∴故答案为13、【解析】根据幂函数的定义得,解得或,再结合偶函数性质得.【详解】解:因为函数是幂函数,所以,解得或,当时,,为奇函数,不满足,舍;当时,,为偶函数,满足条件.所以.故答案为:14、60°【解析】取BC的中点E,则,则即为所求,设棱长为2,则,15、2【解析】取的中点,连接,,则,则为二面角的平面角点睛:取的中点,连接,,根据正方形可知,,则为二面角的平面角,在三角形中求出的长.本题主要是在折叠问题中考查了两点间的距离.折叠问题要注意分清在折叠前后哪些量发生了变化,哪里量没变16、或(不唯一).【解析】根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可.【详解】解:根据函数最小正周期为,可构造正弦型、余弦型或者正切型函数,再结合在上单调递增,构造即可,如或满足题意故答案为:或(不唯一).三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据一元二次不等式和一元二次方程的关系得出实数a,b的值;(2)不等式f(x)≥1-x2等价于,结合基本不等式得出实数a的取值范围【小问1详解】若f(x)≤-4的解集为[2,b],则的解集为[2,b]所以,解得【小问2详解】由f(x)≥1-x2得对恒成立即在区间恒成立,所以又,当且仅当时,取等号所以,即,故实数的取值范围为18、(1)的最大值,(2)【解析】(1)根据的范围可得的范围,可得的最大值及取得最大值时自变量的集合;(2)由图象平移规律可得,结合的范围和正弦曲线的单调性可得答案.【小问1详解】因为,所以,所以,当即时的最大值,所以取得最大值时自变量的集合是.【小问2详解】因为把曲线向左平移个单位长度,然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数的图象,所以.因为,所以.因为正弦曲线在上的单调递增区间是,所以,所以.所以在上的单调递增区间是.19、(1)详见解析(2)【解析】(1)证面面垂直可根据证线线垂直,∵为菱形,∴.∵平面,∴.∴平面.(2)可根据等体积法求解到平面的距离试题解析:(1)∵为菱形,∴.∵平面,∴.∴平面.又平面,∴平面平面.(2)∵,,∴,.∵,∴.若设到平面的距离为.∴,∴,∴.即到平面的距离为.20、(1)函数在区间是递增函数;证明见解析;(2)或【解析】(1)由奇函数定义建立方程组可求出,再用定义法证明单调性即可;(2)根据复合函数的单调性,分类讨论的单调性,结合函数的单调性研究最值即可求解【详解】(1)∵是奇函数,∴,又,且,所以,,经检验,满足题意得,所以函数在区间是递增函数证明如下:且,所以有:由,得,,又,故,所以,即,所以函数在区间是递增函数(2)令,由(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论