下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1讲实数【学习目标】1.了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方运算求某些数的立方根,会用计算器求平方根和立方根.3.了解无理数和实数的概念,知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应;了解数的范围由有理数扩大为实数后,概念、运算等的一致性及其发展变化.4.能用有理数估计一个无理数的大致范围.【基础知识】一:平方根和立方根类型项目平方根立方根被开方数非负数任意实数符号表示性质一个正数有两个平方根,且互为相反数;零的平方根为零;负数没有平方根;一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零;重要结论二:实数有理数和无理数统称为实数.
1.实数的分类按定义分:实数按与0的大小关系分:实数要点诠释:(1)所有的实数分成三类:有限小数,无限循环小数,无限不循环小数.其中有限小数和无限循环小数统称有理数,无限不循环小数叫做无理数.(2)无理数分成三类:①开方开不尽的数,如,等;②有特殊意义的数,如π;③有特定结构的数,如0.1010010001…(3)凡能写成无限不循环小数的数都是无理数,并且无理数不能写成分数形式.(4)实数和数轴上点是一一对应的.2.实数与数轴上的点一一对应.数轴上的任何一个点都对应一个实数,反之任何一个实数都能在数轴上找到一个点与之对应.3.实数的三个非负性及性质:
在实数范围内,正数和零统称为非负数。我们已经学习过的非负数有如下三种形式:
(1)任何一个实数的绝对值是非负数,即||≥0;
(2)任何一个实数的平方是非负数,即≥0;
(3)任何非负数的算术平方根是非负数,即().
非负数具有以下性质:
(1)非负数有最小值零;
(2)有限个非负数之和仍是非负数;
(3)几个非负数之和等于0,则每个非负数都等于0.4.实数的运算:数的相反数是-;一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0.有理数的运算法则和运算律在实数范围内仍然成立.实数混合运算的运算顺序:先乘方、开方、再乘除,最后算加减.同级运算按从左到右顺序进行,有括号先算括号里.5.实数的大小的比较:
有理数大小的比较法则在实数范围内仍然成立.法则1.实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数总比左边的数大;法则2.正数大于0,0大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;法则3.两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法.【考点剖析】考点一:实数与数轴.1.如图,线段AB将边长为1个单位长度的正方形分割为两个等腰直角三角形,以A为圆心,AB的长度为半径画弧交数轴于点C,那么点C在数轴上表示的实数是()A. B. C. D.1考点二:平方根.2.7的平方根是()A. B. C. D.3.5考点三:算术平方根3.的算术平方根是()A. B.4 C. D.2【真题演练】1.x是的整数部分,则的值为()A.0 B.1 C.2 D.32.的算术平方根是()A. B.3 C. D.93.64的立方根是()A.8 B. C. D.44.下列各数中,3.14,,1.23233是无理数的是()A.3.14 B. C. D.1.232335.在中,负分数的个数为()A.1 B.2 C.3 D.46.在实数中,,,0.1010010001,,无理数有()个A.1 B.2 C.3 D.47.在实数,1.020020002,,中,无理数是()A. B.1.020020002 C. D.8.在,,0,3.14,,,,中,无理数的个数有()A.1个 B.2个 C.3个 D.4个【过关检测】1.在中,无理数的个数是()A.1个 B.2个 C.3个 D.4个2.大于,而小于的整数共有()A.7个 B.6个 C.5个 D.4个3.在实数,0.3030030003…(每两个3之间多添一个0)中,无理数有()A.2个 B.3个 C.4个 D.5个4.的平方根等于()A.4 B. C. D.25.已知一个数的平方根是,这个数是()A. B.9 C.81 D.6.在这四个数中,最小的数是()A.0 B. C. D.27.下列实数是无理数的是()A. B. C.3.1415 D.﹣58.在实数中,无理数的个数有()A.4 B.3 C.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《珠宝玉石教程》课件
- 车辆租赁协议三篇
- 人力资源行业员工福利顾问工作总结
- 2003年海南高考语文真题及答案
- 水利行业的保安工作总结
- 2023-2024年企业主要负责人安全培训考试题附答案【培优】
- 2023年-2024年项目部安全培训考试题【易错题】
- 1000字的贫困申请书范文5篇
- 开题答辩概览
- 电灼伤护理查房
- 智能化施工管理平台
- 2024年国家能源集团江苏电力有限公司招聘笔试参考题库附带答案详解
- 江西省九江市2023-2024学年部编版九年级上学期期末历史试题(含答案)
- 山东省济南市2023-2024学年高三上学期期末学习质量检测物理试题(原卷版)
- 2024年新华人寿保险股份有限公司招聘笔试参考题库含答案解析
- 能源托管服务投标方案(技术方案)
- 2024年新奥集团股份有限公司招聘笔试参考题库含答案解析
- 乳头混淆疾病演示课件
- 高速公路涉路施工许可技术审查指南(一)
- 海南物流行业发展趋势分析报告
- 安全运维配置检查
评论
0/150
提交评论