2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题【含答案】_第1页
2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题【含答案】_第2页
2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题【含答案】_第3页
2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题【含答案】_第4页
2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题【含答案】_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年山东省济南市济阳县数学九年级第一学期开学复习检测试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)一次函数不经过的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2、(4分)如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=15,则S2的值是(

)A.3 B. C.5 D.3、(4分)正方形具有而菱形不具有的性质是()A.对角线平分一组对角 B.对角互补C.四边相等 D.对边平行4、(4分)下列各式中,属于分式的是()A. B. C. D.5、(4分)计算的结果为()A. B.±5 C.-5 D.56、(4分)化简的结果是()A.2 B. C.4 D.167、(4分)如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF8、(4分)已知A和B都在同一条数轴上,点A表示2,又知点B和点A相距5个单位长度,则点B表示的数一定是()A.3 B.7 C.7或3 D.7或3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在平行四边形ABCD中,AB=2AD,BE平分∠ABC交CD于点E,作BF⊥AD,垂足为F,连接EF,小明得到三个结论:①∠FBC=90°;②ED=EB;③S△EBF=S△EDF+S△EBC;则三个结论中一定成立的是_____.10、(4分)如图,正方形ABCD的边长为4,点E为AD的延长线上一点,且DE=DC,点P为边AD上一动点,且PC⊥PG,PG=PC,点F为EG的中点.当点P从D点运动到A点时,则CF的最小值为___________11、(4分)已知下列函数:;;.其中是一次函数的有__________.(填序号)12、(4分)如图,在矩形ABCD中,对角线AC的垂直平分线分别交AB,CD于点E,F,连接AF,CE,如果∠BCE=26°,则∠CAF=_____13、(4分)某中学组织初二学生开展篮球比赛,以班为单位单循环形式(每两班之间赛一场),现计划安排15场比赛,则共有多少个班级参赛?设有x个班级参赛,根据题意,可列方程为_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M在y轴上运动.(1)求直线AB的函数解析式;(2)动点M在y轴上运动,使MA+MB的值最小,求点M的坐标;(3)在y轴的负半轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.15、(8分)如图,某项研究表明,大拇指与小拇指尽量张开时,两指尖的距离称为指距.如表是测得的指距与身高的一组数据:指距d(cm)192021身高h(cm)151160169(1)你能确定身高h与指距d之间的函数关系式吗?(2)若某人的身高为196cm,一般情况下他的指距应是多少?16、(8分)在一个边长为(2+3)cm的正方形的内部挖去一个长为(2+)cm,宽为(﹣)cm的矩形,求剩余部分图形的面积.17、(10分)已知:如图,在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,BF∥CE,CF∥BE.求证:四边形BECF是正方形.18、(10分)某水厂为了了解小区居民的用水情况,随机抽查了小区10户家庭的月用水量,结果如下表:月用水量()1013141718户数22321如果小区有500户家庭,请你估计小区居民每月(按30天计算)共用水多少立方米?(答案用科学记数法表示)B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为__________.20、(4分)在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点A作已知直线l的平行线”.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,AB长为半径作弧,交直线l于点C;(2)分别以A,C为圆心,以AB长为半径作弧,两弧相交于点D;(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确”.请回答:小云的作图依据是____________.21、(4分)如图所示,在直角坐标系中,右边的图案是由左边的图案经过平移得到的,左边图案中左、右眼睛的坐标分别是(-4,2),(-2,2),右边图案中左眼的坐标是(3,4),则右边图案中右眼的坐标是__.22、(4分)如图,在等腰Rt△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于D,DE⊥AB于D,若AB=10,则△BDE的周长等于_.23、(4分)已知直线y=﹣与x轴、y轴分别交于点A、B,在坐标轴上找点P,使△ABP为等腰三角形,则点P的个数为_____个.二、解答题(本大题共3个小题,共30分)24、(8分)(1)发现.①;②;③;……写出④;⑤;(2)归纳与猜想.如果n为正整数,用含n的式子表示这个运算规律;(3)证明这个猜想.25、(10分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠1.(1)求证:四边形ABCD是矩形;(1)若∠BOC=110°,AB=4cm,求四边形ABCD的面积.26、(12分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式;(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油.在此次行驶过程中,行驶了450千米时,司机发现离前方最近的加油站有75千米的路程.在开往该加油站的途中,当汽车开始提示加油时,离加油站的路程是多少千米?

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

由于k=-1<0,b=-1,由此可以确定函数的图象经过的象限.【详解】∵y=-x-1,∴k=-1<0,b=-1<0,∴它的图象经过的象限是第二、三、四象限,不经过第一象限.故选A.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.2、C【解析】将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,∵正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,S1+S2+S3=11,∴得出S1=8y+x,S2=4y+x,S3=x,∴S1+S2+S3=3x+12y=11,即3x+12y=11,x+4y=1,所以S2=x+4y=1,故答案为1.点睛:将四边形MTKN的面积设为x,将其余八个全等的三角形面积一个设为y,用x,y表示出S1,S2,S3,再利用S1+S2+S3=11求解是解决问题的关键.3、B【解析】

要熟练掌握菱形对角线相互垂直平分与正方形对角线相互垂直平分相等的性质,根据各自性质进行比较即可解答.【详解】A.正方形和菱形的对角线都可以平分一组对角,故本选项错误B.只有正方形的对角互补,故本项正确C.正方形和菱形的四边都相等,故本项错误D.正方形和菱形的对边都平行,故本项错误故选B本题考查正方形和菱形的性质,熟练掌握其性质是解题关键.4、C【解析】

根据分式的定义,可得出答案.【详解】A、分母中不含未知数故不是分式,故错误;B、是分数形式,但分母不含未知数不是分式,故错误;C、是分式,故正确;D、分母中不含未知数不是分式,故错误.故选C本题考查了分式的定义,熟练掌握分式的概念是正确求解的关键.5、D【解析】

根据二次根式的性质进行化简即可判断.【详解】解:=1.故选:D.本题考查了二次根式的化简,关键是理解以下几点:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a>0时,表示a的算术平方根;当a=0时,=0;当a<0时,②性质:=|a|.6、A【解析】

根据算术平方根的定义计算即可.【详解】∵11=4,∴4的算术平方根是1,即=1.故选:A.本题考查算术平方根的概念:一般地,如果一个正数x的平方等于a,即x1=a,那么这个正数x叫做a的算术平方根.记为.7、A【解析】

平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.所以Rt△ABC与Rt△DEF的形状和大小完全相同,即Rt△ABC≌Rt△DEF,再根据性质得到相应结论.【详解】解:∵Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF

∴Rt△ABC≌Rt△DEF

∴BC=EF,AC=DF

所以只有选项A是错误的,故选A.本题涉及的是全等三角形的知识,解答本题的关键是应用平移的基本性质.8、D【解析】

本题根据题意可知B的取值有两种,一种是在点A的左边,一种是在点A的右边.即|b﹣(﹣2)|=5,去绝对值即可得出答案.【详解】依题意得:数轴上与A相距5个单位的点有两个,右边的点为﹣2+5=3;左边的点为﹣2﹣5=﹣1.故选D.本题难度不大,但要注意分类讨论,不要漏解.二、填空题(本大题共5个小题,每小题4分,共20分)9、①③【解析】

由垂直的定义得到∠AFB=90°,根据平行线的性质即可得到∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,根据全等三角形的性质得到EF=EM=12FM,根据直角三角形的性质得到BE=12FM,等量代换的EF=BE,故②错误;由于S△BEF=S△BME,S△DFE=S△CME,于是得到S△EBF=S△BME=S△EDF+S△【详解】解:∵BF⊥AD,∴∠AFB=90°,∵在平行四边形ABCD中,AD∥BC,∴∠AFB=∠CBF=90°,故①正确;延长FE交BC的延长线与M,∴∠DFE=∠M,在△DFE与△CME中,∠DFE∴△DFE≌△CME(AAS),∴EF=EM=12FM∵∠FBM=90°,∴BE=12FM∴EF=BE,∵EF≠DE,故②错误;∵EF=EM,∴S△BEF=S△BME,∵△DFE≌△CME,∴S△DFE=S△CME,∴S△EBF=S△BME=S△EDF+S△EBC.故③正确.故答案为:①③.此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△DEF≌△CME是解题关键.10、【解析】

由正方形ABCD的边长为4,得出AB=BC=4,∠B=90°,得出AC=,当P与D重合时,PC=ED=PA,即G与A重合,则EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的路径为DF,由D是AE的中点,F是EG的中点,得出DF是△EAG的中位线,证得∠FDA=45°,则F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=.【详解】解:连接FD∵正方形ABCD的边长为4,∴AB=BC=4,∠B=90°,∴AC=,当P与D重合时,PC=ED=PA,即G与A重合,∴EG的中点为D,即F与D重合,当点P从D点运动到A点时,则点F运动的轨迹为DF,∵D是AE的中点,F是EG的中点,∴DF是△EAG的中位线,∴DF∥AG,∵∠CAG=90°,∠CAB=45°,∴∠BAG=45°,∴∠EAG=135°,∴∠EDF=135°,∴∠FDA=45°,∴F为正方形ABCD的对角线的交点,CF⊥DF,此时CF最小,此时CF=AG=;故答案为:.本题主要考查了正方形的性质,掌握正方形的性质是解题的关键.11、【解析】

根据一次函数的定义进行判断即可.【详解】解:,是一次函数;,自变量的次数为2,故不是一次函数;是一次函数.故答案为.本题主要考查一次函数的定义,一次函数解析式y=kx+b的结构特征:(1)k是常数,k≠0;(2)自变量x的次数是1;(3)常数项b可以为任意实数.12、29°.【解析】【分析】先证明△AOE≌△COF,得出OE=OF,再根据EF垂直平分AC,得出四边形AFCE为菱形,然后再根据菱形对角线的性质结合∠BCE=26°进行求解即可得.【详解】∵EF垂直平分AC,∴OA=OC,∵四边形ABCD为矩形,∴CD∥AB,∠BCD=90°,∴∠EAO=∠FCO,又∵∠AOE=∠COF,∴△AOE≌△COF,∴OE=OF,∴四边形AFCE为平行四边形,又∵EF垂直AC,∴平行四边形AFCE为菱形,∴∠CAF=∠FAE,∠FAE=∠FCE,∵∠BCE=26°,∴∠FCE=90°-∠BCE=64°,∴∠CAF=32°,故答案为32°.【点睛】本题考查了矩形的性质、菱形的判定与性质,熟练掌握菱形的判定与性质是解题的关键.13、【解析】

设共有x个班级参赛,根据每一个球队和其他球队都打(x﹣1)场球,但每两个球队间只有一场比赛,可得总场次=×球队数×(球队数-1),据此列方程即可.【详解】有x个班级参赛,根据题意,得=15,故答案为:=15.本题考查了一元二次方程的应用,弄清题意,找准等量关系列出方程是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1)y=-x+6;(2)M(0,);(3)(0,-2)或(0,-6).【解析】

(1)设AB的函数解析式为:y=kx+b,把A、B两点的坐标代入解方程组即可.(2)作点B关于y轴的对称点B′,则B′点的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,根据A、B′两点坐标可知直线AB′的解析式,即可求出M点坐标,(3)分别考虑∠MAB为直角时直线MA的解析式,∠ABM′为直角时直线BM′的解析式,求出M点坐标即可,【详解】(1)设直线AB的函数解析式为y=kx+b,则解方程组得直线AB的函数解析式为y=-x+6,(2)如图作点B关于y轴的对称点B′,则点B′的坐标为(-6,0),连接AB′则AB′为MA+MB的最小值,设直线AB′的解析式为y=mx+n,则,解方程组得所以直线AB′的解析式为,当x=0时,y=,所以M点的坐标为(0,),(3)有符合条件的点M,理由如下:如图:因为△ABM是以AB为直角边的直角三角形,当∠MAB=90°时,直线MA垂直直线AB,∵直线AB的解析式为y=-x+6,∴设MA的解析式为y=x+b,∵点A(4,2),∴2=4+b,∴b=-2,当∠ABM′=90°时,BM′垂直AB,设BM′的解析式为y=x+n,∵点B(6,0)∴6+n=0∴n=-6,即有满足条件的点M为(0,-2)或(0,-6).本题考查了待定系数法求一次函数解析式,一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.熟练掌握相关知识是解题关键.15、(1)身高h与指距d之间的函数关系式为h=9d-20;(2)一般情况下他的指距应是1cm【解析】

(1)根据题意设h与d之间的函数关系式为:h=kd+b,从表格中取两组数据,利用待定系数法,求得函数关系式即可;(2)把h=196代入函数解析式即可求得.【详解】解:(1)设h与d之间的函数关系式为:h=kd+b.把d=20,h=160;d=21,h=169,分别代入得,解得,∴h=9d-20,当d=19时,h=9×19-20=151,符合题意,∴身高h与指距d之间的函数关系式为:h=9d-20;(2)当h=196时,196=9d-20,解得d=1.故一般情况下他的指距应是1cm.主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的设出解析式,再把对应值代入求解.16、57+12﹣【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2+3)2﹣(2+)(﹣)=(12+12+45)﹣(6﹣2+2﹣5)=(57+12﹣)(cm2).考点:二次根式的应用17、证明见解析【解析】

先由BF∥CE,CF∥BE得出四边形BECF是平行四边形,又因为∠BEC=90°得出四边形BECF是矩形,BE=CE邻边相等的矩形是正方形.【详解】∵BF∥CE,CF∥BE,∴四边形BECF是平行四边形.又∵在矩形ABCD中,BE平分∠ABC,CE平分∠DCB,∴∠EBC=∠ECB=45°,∴∠BEC=90°,BE=CE,∴四边形BECF是正方形本题主要考查平行四边形及正方形的判定.18、该小区居民每月共用水约为立方米.【解析】

根据平均数的概念计算,并用样本平均数去计算该小区居民每月用水量.【详解】解:由已知得:10户家庭平均每户月用水量为(立方米)答:该小区居民每月共用水约为立方米.考查了平均数的计算和用样本估计总体的知识,解题关键是抓住用样本平均数去计算该小区居民每月用水量.一、填空题(本大题共5个小题,每小题4分,共20分)19、1【解析】

根据正多边形的外角和以及一个外角的度数,求得边数.【详解】解:正多边形的一个外角等于40°,且外角和为360°,

则这个正多边形的边数是:360°÷40°=1.故答案为:1.本题主要考查了多边形的外角和定理,解决问题的关键是掌握多边形的外角和等于360度.20、①四边相等的四边形是菱形②菱形的对边平行【解析】

利用作法可判定四边形ABCD为菱形,然后根据菱形的性质得到AD与l平行.【详解】由作法得BA=BC=AD=CD,所以四边形ABCD为菱形,所以AD∥BC,故答案为:四条边相等的四边形为菱形,菱形的对边平行.本题考查了作图-复杂作图、菱形的判定与性质,复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21、(5,4)【解析】

由左图案中左眼的坐标是(-4,2),右图案中左眼的坐标是(3,4),可知左图案向右平移了7个单位长度,向上平移了2个单位长度变为右图案.因此右眼的坐标由(-2,2)变为(5,4).故答案为(5,4).22、1【解析】

由题中条件可得Rt△ACD≌Rt△AED,进而得出AC=AE,然后把△BDE的边长通过等量转化即可得出结论.【详解】解:∵AD平分∠CAB,AC⊥BC于点C,DE⊥AB于E,∴CD=DE.又∵AD=AD,∴Rt△ACD≌Rt△AED,∴AC=AE.又∵AC=BC,∴BC=AE,∴△DBE的周长为:DE+BD+EB=CD+BD+EB=BC+EB=AC+EB=AE+EB=AB=1.故答案为:1.本题主要考查了角平分线的性质以及全等三角形的判定及性质,能够掌握并熟练运用.23、1【解析】

根据题意可以画出相应的图形,然后写出各种情况下的等腰三角形,即可解答本题.【详解】如图所示,当BA=BP1时,△ABP1是等腰三角形,当BA=BP2时,△ABP2是等腰三角形,当AB=AP3时,△ABP3是等腰三角形,当AB=AP4时,△ABP4是等腰三角形,当BA=BP5时,△ABP5是等腰三角形,当P1A=P1B时,△ABP1是等腰三角形,故答案为1.本题考查一次函数图象上点的坐标特征、等腰三角形的判定,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答,注意一定要考虑全面.二、解答题(本大题共3个小题,共30分)24、(1),;(2);(3)证明见解析.【解析】

(1)根据题目中的例子直接写出结果;(2)根据(1)中的特例,可以写出相应的猜想;(3)根据(2)中的猜想,对等号左边的式子进行化简,即可得到等号右边的式子,从而可以解答本题.【详解】解:(1)由例子可得,④为:==,⑤=,(2)如果n

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论