教学设计-数学数列与等差数列训练_第1页
教学设计-数学数列与等差数列训练_第2页
教学设计-数学数列与等差数列训练_第3页
教学设计-数学数列与等差数列训练_第4页
教学设计-数学数列与等差数列训练_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

教学设计——数学数列与等差数列训练科目授课时间节次--年—月—日(星期——)第—节指导教师授课班级、授课课时授课题目(包括教材及章节名称)教学设计——数学数列与等差数列训练教学内容本节课的教学内容来自于人教版《数学》(选修1-1),第四章“数列”,主要涉及等差数列的概念、性质及通项公式。具体包括以下几个部分:

1.等差数列的定义:一般形式为a_n=a_1+(n-1)d,其中a_1是首项,d是公差,n是项数。

2.等差数列的性质:

(1)相邻两项的差是常数,即a_n-a_(n-1)=d。

(2)等差数列的项数与项的编号存在线性关系,即n与a_n的线性关系为a_n=a_1+(n-1)d。

(3)等差数列的前n项和为S_n=n/2*(a_1+a_n)=n/2*(2a_1+(n-1)d)。

3.等差数列的通项公式:a_n=a_1+(n-1)d。

4.等差数列的求和公式:S_n=n/2*(a_1+a_n)=n/2*(2a_1+(n-1)d)。核心素养目标本节课旨在培养学生的数学抽象、逻辑推理、数学建模和数学运算的核心素养。具体包括:

1.数学抽象:通过探究等差数列的定义和性质,让学生理解从具体实例中抽象出数列的一般规律的过程,提高学生的抽象思维能力。

2.逻辑推理:引导学生运用归纳法证明等差数列的性质,训练学生的逻辑思维,培养学生善于分析和推理的能力。

3.数学建模:让学生运用等差数列的知识解决实际问题,培养学生运用数学模型解决实际问题的能力。

4.数学运算:通过对等差数列的通项公式和求和公式的学习,提高学生的运算求解能力,培养学生的数感。教学难点与重点1.教学重点:

(1)等差数列的概念:理解等差数列的定义,掌握等差数列的一般形式a_n=a_1+(n-1)d,其中a_1是首项,d是公差,n是项数。

(2)等差数列的性质:掌握等差数列的性质,包括相邻两项的差是常数,等差数列的项数与项的编号存在线性关系,等差数列的前n项和为S_n=n/2*(a_1+a_n)=n/2*(2a_1+(n-1)d)。

(3)等差数列的通项公式和求和公式:会运用等差数列的通项公式a_n=a_1+(n-1)d和求和公式S_n=n/2*(a_1+a_n)=n/2*(2a_1+(n-1)d)解决实际问题。

2.教学难点:

(1)等差数列的概念:理解等差数列的定义,特别是首项、公差和项数之间的关系。

(2)等差数列的性质:引导学生运用归纳法证明等差数列的性质,理解并掌握相邻两项的差是常数、项数与项的编号存在线性关系这两个性质。

(3)等差数列的通项公式和求和公式:引导学生运用公式解决实际问题,特别是如何正确地运用通项公式和求和公式进行计算。

(4)等差数列的实际应用:培养学生运用等差数列的知识解决实际问题的能力,提高学生的数学建模和数学运算能力。教学资源1.软硬件资源:

-教室内的多媒体投影仪和白板

-学生每人一台计算器

-数学教学软件或教学PPT

2.课程平台:

-学校提供的在线学习平台(如有)

-数学课程网站(如有)

3.信息化资源:

-数学视频教程

-在线数学问题讨论区

-数学学习APP或软件

4.教学手段:

-小组讨论

-实例分析

-问题解决

-归纳总结

-互动提问

5.教辅材料:

-人教版《数学》(选修1-1)教材

-等差数列相关的练习题库

-数学作业本

-数学学习指导书教学流程一、导入新课(用时5分钟)

同学们,今天我们将要学习的是《等差数列》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要用到等差数列的情况?”(举例说明)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索等差数列的奥秘。

二、新课讲授(用时10分钟)

1.理论介绍:首先,我们要了解等差数列的基本概念。等差数列是指数列中的每一项与它前一项的差都是一个常数,这个常数称为公差。等差数列的一般形式为a_n=a_1+(n-1)d,其中a_1是首项,d是公差,n是项数。

2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了等差数列在实际中的应用,以及它如何帮助我们解决问题。

3.重点难点解析:在讲授过程中,我会特别强调等差数列的性质和通项公式这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。

三、实践活动(用时10分钟)

1.分组讨论:学生们将分成若干小组,每组讨论一个与等差数列相关的实际问题。

2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示等差数列的基本原理。

3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。

四、学生小组讨论(用时10分钟)

1.讨论主题:学生将围绕“等差数列在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。

2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。

3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。

五、总结回顾(用时5分钟)

今天的学习,我们了解了等差数列的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对等差数列的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。学生学习效果1.理解并掌握等差数列的概念、性质、通项公式和求和公式。

2.能够运用等差数列的知识解决实际问题,提高数学建模和数学运算的能力。

3.培养学生的逻辑推理、数学抽象、数学建模和数学运算的核心素养。

4.提高学生的分析问题、解决问题的能力,培养学生的创新思维和合作精神。

5.增强学生对数学学科的兴趣和自信心,培养学生的自主学习能力和团队合作能力。

6.提高学生的表达能力和沟通技巧,培养学生的批判性思维和综合运用知识的能力。

7.培养学生的时间管理和组织能力,提高学生的高效学习习惯和自主学习能力。

8.增强学生的团队合作意识和集体荣誉感,培养学生的社会责任感和公民意识。板书设计①重点知识点:

1.等差数列的定义

2.等差数列的性质

3.等差数列的通项公式

4.等差数列的求和公式

②关键词:

1.等差数列

2.首项

3.公差

4.项数

5.通项公式

6.求和公式

③艺术性和趣味性:

1.使用图表、图形或符号来表示等差数列的性质和公式,以增加视觉吸引力。

2.用颜色标注等差数列的关键组成部分,如首项、公差等,以突出重点。

3.设计一个有趣的等差数列问题或谜题,激发学生的好奇心和求知欲。

4.板书设计中加入数学家的介绍或与等差数列相关的小故事,增加趣味性。

5.创造一个互动的板书,让学生参与到板书设计中,例如,让学生填写板书中的空白部分或解答相关问题。课后作业1.请运用等差数列的通项公式和求和公式,解决以下实际问题:

某商店进行促销活动,前5天每天销售20台电视机,接下来每天比前一天多销售5台电视机,求前10天每天的销售电视机的数量。

答案:前5天每天销售20台,第6天销售25台,第7天销售30台,以此类推,前10天每天的销售电视机的数量分别为:20,25,30,35,40,45,50,55,60,65。

2.等差数列的前n项和公式为S_n=n/2*(a_1+a_n),请计算以下等差数列的前5项和:

首项a_1=3,公差d=2。

答案:S_5=5/2*(3+(3+4*2))=5/2*(3+11)=5/2*14=35。

3.请判断以下数列是否为等差数列,并说明理由:

2,5,8,11,14。

答案:该数列是等差数列,因为每一项与它前一项的差都是3,即公差d=3。

4.某班级有30名学生,其中男生人数比女生人数多10人,且男生人数是等差数列的第20项,女生人数是等差数列的第10项,请计算该班级男生和女生的人数。

答案:设男生人数为a_20,女生人数为a_10,则a_20=a_1+(20-1)d,a_10=a_1+(10-1)d。由于男生人数比女生人数多10人,所以a_20=a_10+10。将等差数列的通项公式代入,得到a_1+19d=a_1+9d+10,解得d=1,a_1=1。因此,男生人数a_20=1+19*1=20,女生人数a_10=1+9*1=10。所以该班级男生有20人,女生有10人。

5.某数列的前三项分别为1,3,5,且每一项与它前一项的差都是2,请写出该数列的通项公式。

答案:设该数列为a_n,根据等差数列的性质,可得a_n-a_{n-1}=2。由题意知a_1=1,a_2=3,a_3=5,可以得到a_2-a_1=2,a_3-a_2=2。因此,该数列的通项公式为a_n=a_1+(n-1)d,代入已知的a_1和d=2,得到a_n=1+(n-1)*2=2n-1。作业布置与反馈作业布置:

1.请根据本节课所学的等差数列的性质和公式,解决以下实际问题:

(1)某班级进行数学竞赛,前30名学生的分数构成一个等差数列,已知第10名学生的分数为85分,求该等差数列的首项和公差。

(2)某商品前5天的销售量构成一个等差数列,第2天销售量比第1天多20%,求该等差数列的首项和公差。

(3)某公司员工的工资构成一个等差数列,第5个月的工资比第1个月多20%,求该等差数列的首项和公差。

2.请运用等差数列的通项公式和求和公式,计算以下等差数列的前n项和:

(1)首项a_1=2,公差d=3,求前6项和S_6。

(2)首项a_1=5,公差d=4,求前10项和S_10。

(3)首项a_1=8,公差d=-2,求前15项和S_15。

3.请判断以下数列是否为等差数列,并说明理由:

(1)2,5,8,11,14。

(2)3,6,9,12,15。

(3)1,4,7,10,13。

作业反馈:

1.针对学生的作业,及时批改并给出反馈,指出存在的问题并给出改进建议。例如,对于第1题,如果学生没有正确地使用等差数列的性质和公式,应及时指出错误,并引导学生如何正确地应用公式解决问题。

2.对于第2题,如果学生计算错误,应及时指出错误,并引导学生如何正确地运用等差数列的通项公式和求和公式进行计算。

3.对于第3题,如果学生没有正确地判断出数列是否为等差数列,应及时指出错误,并引导学生如何正确地判断等差数列。

4.对于学生的作业,不仅要指出错误,还要给予鼓励和表扬,以激发学生的学习兴趣和自信心。例如,对于正确解答第1题的学生,可以给予表扬,以鼓励他们继续努力。

5.对于作业中的优秀学生,可以给予额外的挑战题目,以提高他们的数学能力和思维能力。例如,可以给出一个更难的实际问题,让学生运用等差数列的知识解决。反思改进措施(一)教学特色创新

1.引入实际案例:通过引入生活中的实际案例,让学生了解等差数列的应用,提高学生的学习兴趣和积极性。

2.利用信息化手段:利用在线学习平台和数学软件,提供丰富的学习资源和互动交流机会,促进学生的自主学习和合作学习。

3.创设互动课堂:鼓励学生提问、参与讨论,通过小组合作学习,激发学生的思考和创造力。

(二)存在主要问题

1.课堂管理:在课堂讨论中,部分学生参与度不高,需要加强课堂管理,提高学生的参与度。

2.教学方法:在讲授等差数列的性质和公式时,过于依赖传统的讲授方式,缺乏学生的实际操作和应用,需要改进教学方法,增加学生的实践和应用机会。

3.教学评价:在评价学生的学习效果时,过多依赖考试成绩,忽视了对学生学习过程的评价,需要改进教学评价方式,注重学生的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论