2025届江西省赣州市石城县石城中学数学高二上期末考试试题含解析_第1页
2025届江西省赣州市石城县石城中学数学高二上期末考试试题含解析_第2页
2025届江西省赣州市石城县石城中学数学高二上期末考试试题含解析_第3页
2025届江西省赣州市石城县石城中学数学高二上期末考试试题含解析_第4页
2025届江西省赣州市石城县石城中学数学高二上期末考试试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届江西省赣州市石城县石城中学数学高二上期末考试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.等差数列中,,,则当取最大值时,的值为A.6 B.7C.6或7 D.不存在2.下面四个条件中,使成立的充分而不必要的条件是A. B.C. D.3.数学美的表现形式不同于自然美或艺术美那样直观,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.平面直角坐标系中,曲线:就是一条形状优美的曲线,对于此曲线,给出如下结论:①曲线围成的图形的面积是;②曲线上的任意两点间的距离不超过;③若是曲线上任意一点,则的最小值是其中正确结论的个数为()A. B.C. D.4.如图,在平行六面体中,()A. B.C. D.5.如图所示,某空间几何体的三视图是3个全等的等腰直角三角形,且直角边长为2,则该空间几何体的体积为()A. B.C. D.6.如图,是对某位同学一学期次体育测试成绩(单位:分)进行统计得到的散点图,关于这位同学的成绩分析,下列结论错误的是()A.该同学的体育测试成绩总的趋势是在逐步提高,且次测试成绩的极差超过分B.该同学次测试成绩的众数是分C.该同学次测试成绩的中位数是分D.该同学次测试成绩与测试次数具有相关性,且呈正相关7.已知各项都为正数的等比数列,其公比为q,前n项和为,满足,且是与的等差中项,则下列选项正确的是()A. B.C D.8.已知O为坐标原点,=(1,2,3),=(2,1,2),=(1,1,2),点Q在直线OP上运动,则当取得最小值时,点Q的坐标为()A. B.C. D.9.《周髀算经》中有这样一个问题:冬至、小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,自冬至日起,其日影长依次成等差数列,立春当日日影长为9.5尺,立夏当日日影长为2.5尺,则冬至当日日影长为()A.12.5尺 B.13尺C.13.5尺 D.14尺10.已知抛物线,过抛物线的焦点作轴的垂线,与抛物线交于、两点,点的坐标为,且为直角三角形,则以直线为准线的抛物线的标准方程为()A. B.C. D.11.已知等差数列的公差,记该数列的前项和为,则的最大值为()A.66 B.72C.132 D.19812.已知点,则直线的倾斜角为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若双曲线的一条渐近线被圆所截得的弦长为2,则该双曲线的实轴长为______.14.若方程表示的曲线是圆,则实数的k取值范围是___________.15.2021年7月24日,在东京奥运会女子10米气步枪决赛中,中国选手杨倩以251.8环的总成绩夺得金牌,为中国代表团摘得本届奥运会首金.已知杨倩其中5次射击命中的环数如下:10.8,10.6,10.6,10.7,9.8,则这组数据的方差为______16.设抛物线C:的焦点为F,准线l与x轴的交点为M,P是C上一点,若|PF|=5,则|PM|=__.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识,组织方从参加活动的群众中随机抽取120名群众,按年龄将这120名群众分成5组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示.(1)求图中m的值;(2)估算这120名群众的年龄的中位数(结果精确到0.1);(3)已知第1组群众中男性有2人,组织方要从第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率.18.(12分)已知数列是递增的等比数列,满足,(1)求数列的通项公式;(2)若,求数列的前n项和19.(12分)已知点,直线,圆.(1)若连接点与圆心的直线与直线垂直,求实数的值;(2)若直线与圆相交于两点,且弦的长为,求实数的值20.(12分)已知数列满足且(1)求证:数列为等差数列,并求数列的通项公式;(2)设,求数列的前n项和为.21.(12分)某公司有员工人,对他们进行年龄和学历情况调查,其结果如下:现从这名员工中随机抽取一人,设“抽取的人具有本科学历”,“抽取的人年龄在岁以下”,试求:(1);(2);(3).22.(10分)已知各项均为正数的等差数列满足,且,,构成等比数列的前三项.(1)求数列,的通项公式;(2)设,求数列的前项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】设等差数列的公差为∵∴∴∴∵∴当取最大值时,的值为或故选C2、A【解析】由,但无法得出,A满足;由、均无法得出,不满足“充分”;由,不满足“不必要”.考点:不等式性质、充分必要性.3、C【解析】结合已知条件写出曲线的解析式,进而作出图像,对于①,通过图像可知,所求面积为四个半圆和一个正方形面积之和,结合数据求解即可;对于②,根据图像求出曲线上的任意两点间的距离的最大值即可判断;对于③,将问题转化为点到直线的距离,然后利用圆上一点到直线的距离的最小值为圆心到直线的距离减去半径即可求解.【详解】当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:;当且时,曲线的方程可化为:,曲线的图像如下图所示:由上图可知,曲线所围成的面积为四个半圆的面积与边长为的正方形的面积之和,从而曲线所围成的面积,故①正确;由曲线的图像可知,曲线上的任意两点间的距离的最大值为两个半径与正方形的边长之和,即,故②错误;因为到直线的距离为,所以,当最小时,易知在曲线的第一象限内的图像上,因为曲线的第一象限内的图像是圆心为,半径为的半圆,所以圆心到的距离,从而,即,故③正确,故选:C.4、B【解析】由空间向量的加法的平行四边形法则和三角形法则,可得所求向量【详解】连接,可得,又,所以故选:B.5、A【解析】在该空间几何体的直观图中去求其体积即可.【详解】依托棱长为2的正方体得到该空间几何体的直观图为三棱锥则故选:A6、C【解析】根据给定的散点图,逐一分析各个选项即可判断作答.【详解】对于A,由散点图知,8次测试成绩总体是依次增大,极差为,A正确;对于B,散点图中8个数据的众数是48,B正确;对于C,散点图中的8个数由小到大排列,最中间两个数都是48,则次测试成绩的中位数是分,C不正确;对于D,散点图中8个点落在某条斜向上的直线附近,则次测试成绩与测试次数具有相关性,且呈正相关,D正确.故选:C7、D【解析】根据题意求得,即可判断AB,再根据等比数列的通项公式即可判断C;再根据等比数列前项和公式即可判断D.【详解】解:因为各项都为正数的等比数列,,所以,又因是与的等差中项,所以,即,解得或(舍去),故B错误;所以,故A错误;所以,故C错误;所以,故D正确.故选:D.8、C【解析】设,用表示出,求得的表达式,结合二次函数的性质求得当时,取得最小值,从而求得点的坐标.【详解】设,则=-=-λ=(1-λ,2-λ,3-2λ),=-=-λ=(2-λ,1-λ,2-2λ),所以=(1-λ,2-λ,3-2λ)·(2-λ,1-λ,2-2λ)=2(3λ2-8λ+5)=.所以当λ=时,取得最小值,此时==,即点Q的坐标为.故选:C9、B【解析】设十二节气自冬至日起的日影长构成的等差数列为,利用等差数列的性质即可求解.【详解】设十二节气自冬至日起的日影长构成的等差数列为,则立春当日日影长为,立夏当日日影长为,故所以冬至当日日影长为.故选:B10、B【解析】设点位于第一象限,求得直线的方程,可得出点的坐标,由抛物线的对称性可得出,进而可得出直线的斜率为,利用斜率公式求得的值,由此可得出以直线为准线的抛物线的标准方程.【详解】设点位于第一象限,直线的方程为,联立,可得,所以,点.为等腰直角三角形,由抛物线的对称性可得出,则直线的斜率为,即,解得.因此,以直线为准线的抛物线的标准方程为.故选:B.【点睛】本题考查抛物线标准方程的求解,考查计算能力,属于中等题.11、A【解析】根据等差数列的公差,求得其通项公式求解.【详解】因为等差数列的公差,所以,则,所以,由,得,所以或12时,该数列的前项和取得最大值,最大值为,故选:A12、A【解析】由两点坐标,求出直线的斜率,利用,结合倾斜角的范围即可求解.【详解】设直线AB的倾斜角为,因为,所以直线AB的斜率,即,因为,所以.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、2【解析】求得双曲线的一条渐近线方程,求得圆心和半径,运用点到直线的距离公式和弦长公式,可得a,b的关系,即可得到的值【详解】一渐近线x+ay=0,被圆(x-2)2+y2=4所截弦长为2,所以圆心到直线距为,即,a=1.所以双曲线的实轴长为2.故答案为:14、【解析】根据二元二次方程表示圆的条件求解【详解】由题意,故答案为:15、128【解析】先求均值,再由方差公式计算【详解】由已知,所以,故答案为:16、【解析】根据抛物线的性质及抛物线方程可求坐标,进而得解.【详解】由抛物线的方程可得焦点,准线,由题意可得,设,有抛物线的性质可得:,解得x=4,代入抛物线的方程可得,所以,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)【解析】(1)由频率分布直方图中所有频率和为1求出;(2)求出概率对应的值即为中位数;(3)求出第一组中总人数,得女性人数,然后求得恰有一名女性的方法数和总的方法数后可得概率【小问1详解】解:因为频率分布直方图的小矩形面积和为1,所以,解得,【小问2详解】解:前2组频率和为,前3组频率和为,所以中位数在第3组,设中位数为,则,;【小问3详解】解:第一组总人数为,男性人2人,则女性有4人,不妨记两名男性为,四名女性为,则随机抽取2名群众的可能为,,,共15种方案,其中恰有一名女性的方法数,共8种,所以第1组中随机抽取2名群众组成维权志愿者服务队,求恰有一名女性的概率为18、(1)(2)【解析】(1)由等比数列的通项公式计算基本量从而得出的通项公式;(2)由(1)可得,再由裂项相消法求和即可.【小问1详解】设等比数列的公比为q,所以有,,联立两式解得或又因为数列是递增的等比数列,所以,所以数列的通项公式为;【小问2详解】∵,∴,∴19、(1)3(2)实数的值为和【解析】(1)由直线垂直,斜率乘积为可得值;(2)求出加以到直线的距离,由勾股定理求弦长,从而可得参数值【小问1详解】圆,,,,,,【小问2详解】圆半径为,设圆心到直线的距离为,则又由点到直线距离公式得:化简得:,解得:或所以实数的值为和.20、(1)证明见解析,;(2).【解析】(1)对递推公式进行变形,结合等差数列的定义进行求解即可;(2)运用裂项相消法进行求解即可.【小问1详解】因为,且,所以即,所以数列是公差为2的等差数列.又,所以即;【小问2详解】由(1)得,所以.故.21、(1);(2);(3).【解析】(1)利用古典概型的概率公式可求得;(2)利用古典概型的概率公式和对立事件的概率公式可求得;(3)利用古典概型的概率公式可求得所求事件的概率.【小问1详解】解:由表格中的数据可得.【小问2详解】解:由表格中的数据可得,所以.【小问3详解】解:可知即岁以下且专科学历,所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论