版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州市新力量联盟2025届高二数学第一学期期末监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.椭圆:与双曲线:的离心率之积为2,则双曲线的渐近线方程为()A. B.C. D.2.函数在上的最小值为()A. B.4C. D.3.在圆内,过点的最长弦和最短弦分别是AC和BD,则四边形ABCD的面积为()A. B.C. D.4.已知不等式解集为,下列结论正确的是()A. B.C. D.5.()A.-2 B.0C.2 D.36.若向量则()A. B.3C. D.7.已知空间向量,,,下列命题中正确的个数是()①若与共线,与共线,则与共线;②若,,非零且共面,则它们所在的直线共面;⑧若,,不共面,那么对任意一个空间向量,存在唯一有序实数组,使得;④若,不共线,向量,则可以构成空间的一个基底.A.0 B.1C.2 D.38.若x,y满足约束条件,则的最大值为()A.1 B.0C.−1 D.−39.下列关于斜二测画法所得直观图的说法中正确的有()①三角形的直观图是三角形;②平行四边形的直观图是平行四边形;③菱形的直观图是菱形;④正方形的直观图是正方形.A.① B.①②C.③④ D.①②③④10.球O为三棱锥的外接球,和都是边长为的正三角形,平面PBC平面ABC,则球的表面积为()A. B.C. D.11.已知为椭圆的两个焦点,过的直线交椭圆于两点,若,则()A. B.C. D.12.若,都是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件二、填空题:本题共4小题,每小题5分,共20分。13.如图,在正方体中,、分别是、的中点,则异面直线与所成角的大小是____________.14.若“,”是真命题,则实数m的取值范围________.15.下列是某厂1~4月份用水量(单位:百吨)的一组数据,由其散点图可知,用水量与月份之间有较好的线性相关关系,其线性回归方程是,则_______.月份1234用水量4.5432.516.圆心在x轴上且过点的一个圆的标准方程可以是______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线上的点到焦点的距离为6(1)求抛物线的方程;(2)设为抛物线的焦点,直线与抛物线交于,两点,求的面积18.(12分)如图,已知圆台下底面圆的直径为,是圆上异于、的点,是圆台上底面圆上的点,且平面平面,,,、分别是、的中点.(1)证明:平面;(2)若直线上平面且过点,试问直线上是否存在点,使直线与平面所成的角和平面与平面的夹角相等?若存在,求出点的所有可能位置;若不存在,请说明理由.19.(12分)如图,四棱锥中,是边长为2的正三角形,底面为菱形,且平面平面,,为上一点,满足.(1)证明:;(2)求二面角的余弦值.20.(12分)如图1,在中,,,,分别是,边上的中点,将沿折起到的位置,使,如图2(1)求点到平面距离;(2)在线段上是否存在一点,使得平面与平面夹角的余弦值为.若存在,求出长;若不存在,请说明理由21.(12分)如图,圆锥的底面直径与母线长均为4,PO是圆锥的高,点C是底面直径AB所对弧的中点,点D是母线PA的中点(1)求圆锥的表面积;(2)求点B到直线CD的距离22.(10分)已知圆.(1)求过点M(2,1)的圆的切线方程;(2)直线过点且被圆截得的弦长为2,求直线的方程;(3)已知圆的圆心在直线y=1上,与y轴相切,且与圆相外切,求圆的标准方程.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】先求出椭圆的离心率,再由题意得出双曲线的离心率,根据离心率即可求出渐近线斜率得解.【详解】椭圆:的离心率为,则,依题意,双曲线;的离心率为,而,于是得,解得:,所以双曲线的渐近线方程为故选:C2、D【解析】求出导数,由导数确定函数在上的单调性与极值,可得最小值【详解】,所以时,,递减,时,,递增,所以是在上的唯一极值点,极小值也是最小值.故选:D3、D【解析】由题,求得圆的圆心和半径,易知最长弦,最短弦为过点与垂直的弦,再求得BD的长,可得面积.【详解】圆化简为可得圆心为易知过点的最长弦为直径,即而最短弦为过与垂直的弦,圆心到的距离:所以弦所以四边形ABCD的面积:故选:D4、C【解析】根据不等式解集为,得方程的解为或,且,利用韦达定理即可将用表示,即可判断各选项的正误.【详解】解:因为不等式解集为,所以方程的解为或,且,所以,所以,所以,故ABD错误;,故C正确.故选:C.5、C【解析】根据定积分公式直接计算即可求得结果【详解】由故选:C6、D【解析】先求得,然后根据空间向量模的坐标运算求得【详解】由于向量,,所以.故故选:D7、B【解析】用向量共线或共面的基本定理即可判断.【详解】若与,与共线,,则不能判定,故①错误;若非零向量共面,则向量可以在一个与组成的平面平行的平面上,故②错误;不共面,意味着它们都是非零向量,可以作为一组基底,故③正确;,∴与共面,故不能组成一个基底,故④错误;故选:C.8、B【解析】先画出可行域,由,得,作出直线,过点时,取得最大值,求出点的坐标代入目标函数中可得答案【详解】不等式组表示的可行域如图所示,由,得,作出直线,过点时,取得最大值,由,得,即,所以的最大值为,故选:B9、B【解析】根据斜二侧直观图的画法法则,直接判断①②③④的正确性,即可推出结论【详解】由斜二测画法规则知:三角形的直观图仍然是三角形,所以①正确;根据平行性不变知,平行四边形的直观图还是平行四边形,所以②正确;根据两轴的夹角为45°或135°知,菱形的直观图不再是菱形,所以③错误;根据平行于x轴的长度不变,平行于y轴的长度减半知,正方形的直观图不再是正方形,所以④错误.故选:B.10、B【解析】取中点为T,以及的外心为,的外心为,依据平面平面可知为正方形,然后计算外接球半径,最后根据球表面积公式计算.【详解】设中点为T,的外心为,的外心为,如图由和均为边长为的正三角形则和的外接圆半径为,又因为平面PBC平面ABC,所以平面,可知且,过分别作平面、平面的垂线相交于点即为三棱锥的外接球的球心,且四边形是边长为的正方形,所以外接球半径,则球的表面积为,故选:B11、C【解析】根据椭圆的定义可得,由即可求解.【详解】由,可得根据椭圆的定义,所以.故选:C12、A【解析】根据充分条件和必要条件的定义判断即可得正确选项.【详解】若,则,可得,所以,可得,故充分性成立,取,,满足,但,无意义得不出,故必要性不成立,所以是的充分不必要条件,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】分别以所在直线为轴,建立空间直角坐标系,设,则,,即异面直线A1M与DN所成角的大小是考点:异面直线所成的角14、【解析】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,据此即可求出结果.【详解】由于“,”是真命题,则实数m的取值集合就是函数的函数值的集合,即.故答案为:【点睛】本题主要考查了存在量词命题的概念的理解,以及数学转换思想,属于基础题.15、25【解析】根据表格数据求出,代入,即可求出.【详解】解:由题意知:,,将代入线性回归方程,即,解得:.故答案为:5.25.16、【解析】确定x轴上一个点做圆心,求出半径,再写出圆的标准方程即可.【详解】以x轴上的点为圆心,则半径,所以圆的标准方程为:.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)根据焦半径公式可求,从而可求抛物线的方程.(2)求出的长度后可求的面积.【小问1详解】因为,所以,故抛物线方程为:.【小问2详解】设,且,由可得,故或,故,故,故,而到直线的距离为,故的面积为18、(1)证明见解析;(2)存在,点与点重合.【解析】(1)证明出,利用面面垂直的性质可证得结论成立;(2)以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,分析可知,设点,利用空间向量法结合同角三角函数的基本关系可得出关于的方程,解出的值,即可得出结论.【小问1详解】证明:因为为圆的一条直径,且是圆上异于、的点,故,又因平面平面,平面平面,平面,所以平面.【小问2详解】解:存在,理由如下:如图,以为坐标原点,为轴,为轴,过垂直于平面的直线为轴,建立空间直角坐标系,易知轴在平面内,则,,,,,,由直线平面且过点,以及平面,得,设,则,,,设平面的法向量为,则则,即,取,得,易知平面的法向量,设直线与平面所成的角为,平面与平面的夹角为,则,,由,得,即,解得,所以当点与点重合时,直线与平面所成的角和平面与平面的夹角相等.19、(1)证明见解析;(2).【解析】(1)设为中点,连接,根据,证明平面得到答案.(2)以为原点,,,分别为,,轴建立空间直角坐标系,计算各点坐标,计算平面和平面的法向量,根据向量夹角公式计算得到答案.【详解】(1)设为中点,连接,,∵,∴,又∵底面四边形为菱形,,∴为等边三角形,∴,又∴,,平面,∴平面,而平面,∴.(2)∵平面平面,平面平面,,∴平面以为原点,,,分别为,,轴建立空间直角坐标系,则,,,,,,由,,,即,∴,,,设为平面的法向量,则由,令,得,,∴,设为平面的法向量,则由,令,得,,∴,设二面角的平面角为,则,∴二面角的的余弦值为.【点睛】本题考查了线线垂直,二面角,意在考查学生的计算能力和空间想象能力,建立空间直角坐标系是解题的关键.20、(1)(2)存在,【解析】(1)根据题意分别由已知条件计算出的面积和的面积,利用求解,(2)如图建立空间直角坐标系,设,然后求出平面与平面的法向量,利用向量平夹角公式列方程可求得结果【小问1详解】在中,,因为,分别是,边上的中点,所以∥,,所以,所以,因为,所以平面,所以平面,因为平面,所以,所以,因为平面,平面,所以平面平面,因为,所以,因为,所以是等边三角形,取的中点,连接,则,,因为平面平面,平面平面,平面,所以平面,在中,,所以边上的高为,所以,在梯形中,,设点到平面的距离为,因为,所以,所以,得,所以点到平面的距离为【小问2详解】由(1)可知平面,,所以以为原点,建立如图所示的空间直角坐标系,则,设,则,设平面的法向量为,则,令,则,设平面的法向量为,则,令,则,则平面与平面夹角的余弦值为,两边平方得,,解得或(舍去),所以,所以21、(1)(2)【解析】(1)直接运用圆锥的表面积公式计算即可;(2)建立空间直角坐标,然后运用向量法计算可求得答案.【小问1详解】【小问2详解】如图,建立直角坐标系,,,,∴B在CD上投影的长度∴B到CD的距离解法2:设直线CD上一点E满足令,则∴,∴,∴∴,故B到CD距离为.22、(1)y=1;(2)x+y-2=0;(3).【解析】(1)将圆的一般方程化为圆的标准方程,结合图形即可求出结果;(2)根据题意可知直线过圆心,利用直线的两点式方程计算即可得出结果;(3)设圆
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年环保公益宣传品采购与服务合同3篇
- 2024年版:建筑工程专业分包合同模板
- 简易警报器课程设计
- 工程经济学课程设计
- 航天能源课程设计思路
- 电工实训教学课程设计
- 《黑衣“超人”》课件
- 机械冲床课程设计题目
- 色彩搭配系统课程设计
- 米利根案件课程设计
- 《皮肤病中成药导引》课件
- 2024-2030年中国除颤仪行业市场分析报告
- 2023-2024学年广东省广州市越秀区九年级(上)期末物理试卷(含答案)
- 广东省广州市天河区2023-2024学年八年级上学期期末考试物理试题(含答案)
- 2024年高一上学期期末数学考点《压轴题》含答案解析
- 成都中医药大学博士申请
- 太空军事法律问题-洞察分析
- 2024年行政执法人员资格考试必考知识题库及答案(共250题)
- 招标代理岗位职责规章制度
- 家校携手育桃李 齐心合力创辉煌 课件高二上学期期末家长会
- 二零二四年风力发电项目EPC总承包合同
评论
0/150
提交评论