版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届海南省农垦实验中学数学高二上期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某高中从3名男教师和2名女教师中选出3名教师,派到3个不同的乡村支教,要求这3名教师中男女都有,则不同的选派方案共有()种A.9 B.36C.54 D.1082.如图,直四棱柱的底面是菱形,,,M是的中点,则异面直线与所成角的余弦值为()A. B.C. D.3.设直线与双曲线(,)的两条渐近线分别交于,两点,若点满足,则该双曲线的离心率是()A. B.C. D.4.设,是两个不同的平面,是直线且.“”是“”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.已知等差数列的前项和为,若,,则()A. B.C. D.6.设等差数列的前n项和为,若,,则()A.60 B.80C.90 D.1007.若“”是“”的充分不必要条件,则实数a的取值范围为A. B.或C. D.8.在公比为的等比数列中,前项和,则()A.1 B.2C.3 D.49.下列函数是偶函数且在上是减函数的是A. B.C. D.10.在中,,,,若该三角形有两个解,则范围是()A. B.C. D.11.在等差数列中,已知,,则使数列的前n项和成立时n的最小值为()A.6 B.7C.9 D.1012.南宋数学家杨辉在《详解九章算法》中讨论过高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.例如“百层球堆垛”:第一层有1个球,第二层有3个球,第三层有6个球,第四层有10个球,第五层有15个球,…,各层球数之差:,,,,…即2,3,4,5,…是等差数列.现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,则该数列的第8项为()A.51 B.68C.106 D.157二、填空题:本题共4小题,每小题5分,共20分。13.某企业有4个分厂,新培训了一批6名技术人员,将这6名技术人员分配到各分厂,要求每个分厂至少1人,则不同的分配方案种数为________.14.已知等差数列的公差不为零,若,,成等比数列,则______.15.设,,若将函数的图像向左平移个单位能使其图像与原图像重合,则正实数的最小值为___________.16.经过、两点的直线斜率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系中,已知抛物线的焦点与椭圆的右焦点重合(1)求椭圆的离心率;(2)求抛物线的方程;(3)设是抛物线上一点,且,求点的坐标18.(12分)抛物线的焦点为F,过点F的直线交抛物线于A,B两点(1)若,求直线AB的斜率;(2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值19.(12分)“既要金山银山,又要绿水青山”.滨江风景区在一个直径为100米的半圆形花园中设计一条观光线路(如图所示).在点与圆弧上的一点(不同于A,B两点)之间设计为直线段小路,在直线段小路的两侧(注意是两侧)种植绿化带;再从点到点设计为沿弧的弧形小路,在弧形小路的内侧(注意是一侧)种植绿化带(注:小路及绿化带的宽度忽略不计).(1)设(弧度),将绿化带总长度表示为的函数;(2)试确定的值,使得绿化带总长度最大.(弧度公式:,其中为弧所对的圆心角)20.(12分)已知一张纸上画有半径为4的圆O,在圆O内有一个定点A,且,折叠纸片,使圆上某一点刚好与A点重合,这样的每一种折法,都留下一条直线折痕,当取遍圆上所有点时,所有折痕与的交点形成的曲线记为C.(1)求曲线C的焦点在轴上的标准方程;(2)过曲线C的右焦点(左焦点为)的直线l与曲线C交于不同的两点M,N,记的面积为S,试求S的取值范围.21.(12分)已知函数f(x)=x﹣lnx(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)求函数f(x)的极值.22.(10分)已知函数(1)填写函数的相关性质;定义域值域零点极值点单调性性质(2)通过(1)绘制出函数的图像,并讨论方程解的个数
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据给定条件利用排列并结合排除法列式计算作答.【详解】从含有3名男教师和2名女教师的5名教师中任选3名教师,派到3个不同的乡村支教,不同的选派方案有种,选出3名教师全是男教师的不同的选派方案有种,所以3名教师中男女都有的不同的选派方案共有种故选:C2、D【解析】用向量分别表示,利用向量的夹角公式即可求解.【详解】由题意可得,故选:D【点睛】本题主要考查用向量的夹角公式求异面直线所成的角,属于基础题.3、C【解析】先求出,的坐标,再求中点坐标,利用点满足,可得,从而求双曲线的离心率.【详解】解:由双曲线方程可知,渐近线为,分别于联立,解得:,,所以中点坐标为,因为点满足,所以,所以,即,所以.故选:C.【点睛】本题考查双曲线的离心率,考查直线与双曲线的位置关系,考查学生的计算能力,属于中档题.4、B【解析】,得不到,因为可能相交,只要和的交线平行即可得到;,,∴和没有公共点,∴,即能得到;∴“”是“”的必要不充分条件.故选B考点:必要条件、充分条件与充要条件的判断.【方法点晴】考查线面平行的定义,线面平行的判定定理,面面平行的定义,面面平行的判定定理,以及充分条件、必要条件,及必要不充分条件的概念,属于基础题;并得不到,根据面面平行的判定定理,只有内的两相交直线都平行于,而,并且,显然能得到,这样即可找出正确选项.5、B【解析】根据和可求得,结合等差数列通项公式可求得.【详解】设等差数列公差为,由得:;又,,.故选:B.6、D【解析】由题设条件求出,从而可求.【详解】设公差为,因为,,故,解得,故,故选:D.7、D【解析】“”是“”的充分不必要条件,结合集合的包含关系,即可求出的取值范围.【详解】∵“”是“”的充分不必要条件∴或∴故选:D.【点睛】本题考查充分必要条件,根据充要条件求解参数的范围时,可把充分条件、必要条件或充要条件转化为集合间的关系,由此得到不等式(组)后再求范围.解题时要注意,在利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.8、C【解析】先利用和的关系求出和,再求其公比.【详解】由,得,,所以,,则.故选:C.9、C【解析】根据题意,依次分析选项中函数的奇偶性与单调性,综合即可得答案【详解】根据题意,依次分析选项:对于A,为一次函数,不是偶函数,不符合题意;对于B,,,为奇函数,不是偶函数,不符合题意;对于C,,为二次函数,是偶函数且在上是减函数,符合题意;对于D,,,为奇函数,不是偶函数,不符合题意;故选C【点睛】本题考查函数的奇偶性与单调性的判定,关键是掌握常见函数的奇偶性与单调性,属于基础题10、D【解析】根据三角形解得个数可直接构造不等式求得结果.【详解】三角形有两个解,,即.故选:D.11、D【解析】根据等差数列的性质及等差中项结合前项和公式求得,,从而得出结论.【详解】,,,,,,,使数列的前n项和成立时n的最小值为10,故选:D.12、C【解析】对高阶等差数列按其定义逐一进行构造数列,直到出现一般等差数列为止,再根据其递推关系进行求解.【详解】现有一个高阶等差数列,其前6项分别为1,3,6,12,23,41,各项与前一项之差:,,,,,…即2,3,6,11,18,…,,,,,…即1,3,5,7,…是等差数列,所以,故选:C二、填空题:本题共4小题,每小题5分,共20分。13、1560【解析】先把6名技术人员分成4组,每组至少一人,有两种情况:(1)4个组的人数按3,1,1,1分配,(2)4个组的人数为2,2,1,1,求出所有的分组方法,然后再把4个组的人分给4个分厂,从而可求得答案【详解】先把6名技术人员分成4组,每组至少一人.(1)若4个组的人数按3,1,1,1分配,则不同的分配方案有(种).(2)若4个组的人数为2,2,1,1,则不同的分配方案有(种).故所有分组方法共有20+45=65(种).再把4个组的人分给4个分厂,不同的方法有(种).故答案为:156014、0【解析】设等差数列的公差为,,根据,,成等比数列,得到,再根据等差数列的通项公式可得结果.【详解】设等差数列的公差为,,因为,,成等比数列,所以,所以,整理得,因为,所以,所以.故答案为:0.【点睛】本题考查了等比中项,考查了等差数列通项公式基本量运算,属于基础题.15、【解析】根据正弦型函数图像平移法则和正弦函数性质进行解题.【详解】解:由题意得:函数的图像向左平移个单位后得:该函数与原函数图像重合故可知,即故当时,最小正实数.故答案为:16、【解析】利用斜率公式可求得结果.【详解】由斜率公式可知,直线的斜率为.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解析】(1)由椭圆方程即可求出离心率.(2)求出椭圆的焦点即为抛物线的焦点,即可求出答案.(3)由抛物线定义可求出点的坐标【小问1详解】由题意可知,.【小问2详解】椭圆的右焦点为,故抛物线的焦点为.抛物线的方程为.【小问3详解】设的坐标为,,解得,.故的坐标为.18、(1);(2)面积最小值是4【解析】本题主要考查抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,依题意F(1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,得,由此能够求出直线AB的斜率;第二问,由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于,由此能求出四边形OACB的面积的最小值试题解析:(1)依题意知F(1,0),设直线AB方程为.将直线AB的方程与抛物线的方程联立,消去x得.设,,所以,.①因为,所以.②联立①和②,消去,得所以直线AB的斜率是(2)由点C与原点O关于点M对称,得M是线段OC中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于因为,所以当m=0时,四边形OACB的面积最小,最小值是4考点:抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率19、(1);(2).【解析】(1)在直角三角形中,求出,在扇形中利用弧长公式求出弧的长度,则可得函数;(2)利用导数可求得结果.【详解】(1)如图,连接在直角三角形中,所以由于则弧的长为(2)由(1)可知,令得,因为所以,当单调递增,当单调递减,所以当时,使得绿化带总长度最大.【点睛】关键点点睛:仔细审题,注意题目中的关键词“两侧”和“一侧”是解题关键.20、(1);(2)﹒【解析】(1)根据题意,作出图像,可得,由此可知M的轨迹C为以O、A为焦点的椭圆;(2)分为l斜率存在和不存在时讨论,斜率存在时,直线方程和椭圆方程联立,用韦达定理表示的面积,根据变量范围可求面积的最大值﹒【小问1详解】以OA中点G坐标原点,OA所在直线为x轴建立平面直角坐标系,如图:∴可知,,设折痕与和分别交于M,N两点,则MN垂直平分,∴,又∵,∴,∴M的轨迹是以O,A为焦点,4为长轴的椭圆.∴M的轨迹方程C为;【小问2详解】设,,则的周长为当轴时,l的方程为,,,当l与x轴不垂直时,设,由得,∵>0,∴,,,令,则,,∵,∴,∴.综上可知,S的取值范围是21、(1)(2)极小值为,无极大值【解析】(1)求出函数的导函数,再根据导数的几何意义即可求出切线方程;(2)根据导数的符号求出函数的单调区间,再根据极值的定义即可得出答案.【小问1详解】解:,则,,即切线的斜率为0,所以曲线y=f(x)在点(1,f(1))处曲线的切线方程为;小问2详解】当时,,当时,,所以函数在上递减,在上递增,函数的极小值为,无极大值.22
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五版团膳供应合同书标准范本2篇
- 个人货车租赁合同2024版
- 二零二五版养老服务机构合作运营与管理协议3篇
- 咸宁职业技术学院《草食动物饲养学》2023-2024学年第一学期期末试卷
- 西安信息职业大学《水环境监测与评价》2023-2024学年第一学期期末试卷
- 二零二五年度汽车零部件运输与供应链管理合同2篇
- 新疆财经大学《田径教学与实践》2023-2024学年第一学期期末试卷
- 2024技术开发合同服务内容与标的
- 二零二五年度工业地产代理销售合同补充协议3篇
- 二零二五年度电梯设备改造、安装、租赁与维护合同3篇
- 数学八下学霸电子版苏教版
- SQL Server 2000在医院收费审计的运用
- 《FANUC-Oi数控铣床加工中心编程技巧与实例》教学课件(全)
- 微信小程序运营方案课件
- 陈皮水溶性总生物碱的升血压作用量-效关系及药动学研究
- 安全施工专项方案报审表
- 学习解读2022年新制定的《市场主体登记管理条例实施细则》PPT汇报演示
- 好氧废水系统调试、验收、运行、维护手册
- 中石化ERP系统操作手册
- 五年级上册口算+脱式计算+竖式计算+方程
- 气体管道安全管理规程
评论
0/150
提交评论