版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题08用列举法、树状图或列表法求概率及概率的应用考点一已知概率求数量考点二几何概率考点三列举法求概率考点四列表法、树状图求概率考点五用概率判断游戏的公平性考点六概率在转盘抽奖中的应用考点七用频率估计概率及应用考点一已知概率求数量例题:(2021·黑龙江哈尔滨·九年级期末)春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有个红包装的是元,有个红包装的是元,剩下的红包装的是元.若小丽从中随机拿出一个红包,里面装的是元的红包的概率是,则装有元红包的个数是______________.【变式训练】(2022·山东淄博·七年级期末)在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为.若能,请写出如何调整白球数量;若不能,请说明理由.考点二几何概率例题:(2022·山东威海·七年级期末)如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.【变式训练】(2022·山东青岛·七年级期末)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影区域的概率是______.考点三列举法求概率例题:(2022·广东深圳·八年级期末)从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.【变式训练】(2022·吉林大学附属中学八年级期中)从,,3三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于______.考点四列表法、树状图求概率例题:(2022·辽宁鞍山·中考真题)2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用,表示)和八年级的两名学生(用,表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是_________.(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.【变式训练】(2022·辽宁朝阳·中考真题)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.考点五用概率判断游戏的公平性例题:(2022·黑龙江黑河·九年级期末)淘淘和明明玩骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,淘淘赢;点数之和等于7,明明赢;点数之和是其它数,两人不分胜负.(1)请你用“画树状图”或“列表”的方法分析说明此游戏是否公平.(2)请你基于(1)问中得到的数据,设计出一种公平的游戏规则.(列出一种即可)【变式训练】(2022·湖南湘西·九年级期末)学完《概率初步》后,小诚和小明两个好朋友利用课外活动时间自制A、B两组卡片共5张,A组三张分别写有数字2,4,6,B组两张分别写有3,5.它们除了数字外没有任何区别.他俩提出了如下两个问题请你解答:(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果;(3)如果他俩还制定这样一个游戏规则:若选出的两数之积为3的倍数,则小诚获胜;否则小明获胜.请问这样的游戏规则对小诚、小明双方公平吗?请说明理由.考点六概率在转盘抽奖中的应用例题:(2021·山东烟台·七年级期末)新冠疫情以来,各地政府为活跃消费市场,释放消费潜力,各商家采取各种促销以此来对冲疫情影响.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券(若指向边界则重转),凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.【变式训练】(2022·山西大附中一模)某商场,为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:方案一:是直接获得20元的礼金卷;方案二:是得到一次摇奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.指针指向两红一红一蓝两蓝礼金券(元)18918(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.考点七用频率估计概率及应用例题:(2022·山东烟台·七年级期末)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?【变式训练】(2022·山东枣庄·七年级期末)下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n50010001500200030004000发芽的粒数m4719461425189828533812发芽频率0.9420.9460.9490.953(1)求表中,的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.一、选择题1.(2021·湖北咸宁·九年级阶段练习)有4条线段长度分别为2cm,3cm,4cm,5cm,从中任意取三条线段能组成三角形的概率是()A. B. C. D.12.(2022·陕西西安·七年级期末)如图所示的是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅲ”所在区域内的概率是(
)A. B. C. D.3.(2022·全国·九年级课时练习)在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有(
)A.12个 B.14个 C.18个 D.20个4.(2022·黑龙江大庆·八年级期末)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“油”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,取出的两个球上的汉字能组成“美城”的概率(
)A. B. C. D.二、填空题5.(2022·黑龙江大庆·八年级期中)如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是____.6.(2021·浙江·杭州市建兰中学九年级阶段练习)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为_________个.7.(2022·浙江杭州·九年级开学考试)在六张完全相同的卡片上,分别画有圆、矩形、菱形、等边三角形、直角三角形、正六边形,现从中随机抽取一张卡片,既是中心对称图形又是轴对称图形的概率是_____.8.(2022·山西·九年级专题练习)2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是_____.三、解答题9.(2021·河南·温县黄庄镇第一初级中学九年级期中)小明和小颖一起做游戏,他们把形状和大小完全相同的6张卡片分成两组,每组3张,分别标上1,2,3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图(或列表法)求抽取的两张卡片数字之和为奇数的概率;(2)若抽取的两张卡片数字之和为奇数,则小明胜;若抽取的两张卡片数字之和为偶数;则小颖胜.试分析这个游戏是否公平,若不公平,谁获胜的可能性较大.10.(2021·云南玉溪·一模)小明和小红做游戏:在一个不透明的盒子中放入三张卡片,每张卡片上写着一个实数,分别为,,每张卡片除数字不同外其余均相同),游戏规则:小明先从盒子中取出一张卡片,记下卡片上的数字,放回摇匀后小红再取出一张卡片,如果取出的两数之积是有理数,小明赢;反之小红赢.(1)用列表或画树状图的方法表示出所有可能出现的结果;(2)这个游戏规则公平吗?为什么?11.(2022·江苏徐州·一模)一款游戏的规则如下:如图①为游戏棋盘,从起点到终点共7步;如图②是一个被分成4个大小相等的扇形的转盘,转动转盘,待转盘自动停止后,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止),每次棋子按照指针所指的数字前进相应的步数,若棋子最终能恰好落在终点的视为通过游戏,棋子从起点前进2步到达B,第二次转动转盘指针所指数字为3,…,直到棋子到达终点或超过终点停止.(1)转动转盘一次,求转盘停止后指针指向4的概率;(2)请用列表或画树状图法,求转动转盘两次能通过游戏的概率.12.(2022·浙江金华·九年级期末)在一个不透明的口袋里装有若干个相同的红球,为了估计袋中红球的数量,九(2)班学生在数学实验室分组做摸球实验:每组先将15个与红球大小形状完全相同的白球装入袋中,搅匀后从中随机摸出一个球并记下颜色,再把它放回袋中,不断重复.下表是这次活动统计汇总各小组数据后获得的全班数据统计表:摸球的次数s15030060090012001500摸到红球的频数n63123247365484603摸到红球的频率0.4200.4100.4120.4060.403a(1)a=______.(2)请估计:当次数s很大时,摸到红球的频率将会接近______(精确到0.01);请推测:摸到红球的概率是______(精确到0.1).(3)求口袋中红球的数量.专题08用列举法、树状图或列表法求概率及概率的应用考点一已知概率求数量考点二几何概率考点三列举法求概率考点四列表法、树状图求概率考点五用概率判断游戏的公平性考点六概率在转盘抽奖中的应用考点七用频率估计概率及应用考点一已知概率求数量例题:(2021·黑龙江哈尔滨·九年级期末)春节前夕,小丽的奶奶给孩子们准备了一些红包,这些红包的外观相同,其中有个红包装的是元,有个红包装的是元,剩下的红包装的是元.若小丽从中随机拿出一个红包,里面装的是元的红包的概率是,则装有元红包的个数是______________.【答案】【分析】根据概率的大小列出方程求解即可.【详解】解:设有20元的红包x个,根据题意得:,解得:x=16,经检验,x=16是原方程的解,所以,装有元红包的个数是16个,故答案为:16.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.【变式训练】(2022·山东淄博·七年级期末)在一个不透明的盒子里装有除颜色外完全相同的红、白、黑三种颜色的球.其中红球3个,白球5个,黑球若干个,若从中任意摸出一个白球的概率是.(1)求盒子中球的个数;(2)求任意摸出一个球是黑球的概率;(3)能否通过只改变盒子中白球的数量,使得任意摸出一个球是红球的概率为.若能,请写出如何调整白球数量;若不能,请说明理由.【答案】(1)15(2)(3)能,白球需要减少3个【分析】(1)利用白球5个即可求出总数;(2)求出黑球个数后,直接利用概率公式得出答案;(3)利用概率公式计算得出符合题意的方法.(1)解:盒子中球的个数为:(个),答:盒子中球的个数为15个;(2)黑球个数为:;∴任意摸出一个球是黑球的概率为:;(3)能,方案如下:从盒子中拿走3个白球,也就是白球需要减少3个.任意摸出一个球共出现12种等可能的结果,其中摸到红球的有4种..∴白球需要减少3个.【点睛】此题主要考查了概率公式,正确掌握概率求法是解题关键.如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.考点二几何概率例题:(2022·山东威海·七年级期末)如图,数学活动小组自制了一个飞镖盘.若向飞镖盘内投掷飞镖(落在边界线重新投掷),则飞镖落在阴影区域的概率是_____.【答案】【分析】利用阴影部分面积除以总面积=投掷在阴影区域的概率,进而得出答案.【详解】解:由题意可得,投掷在阴影区域的概率是:.故答案为:.【点睛】此题主要考查了几何概率,求出阴影部分面积与总面积的比值是解题关键.【变式训练】(2022·山东青岛·七年级期末)如图,飞镖游戏中的每一块正方形除颜色外都相同,若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影区域的概率是______.【答案】##【分析】求出整个图形的面积和阴影三角形的面积,根据几何概率的定义进行计算即可.【详解】解:设每个小正方形的边长为1个单位长度,则整体的面积为4×4=16(平方单位),阴影三角形的面积为:4×3-×2×1-×2×3-×2×4=4(平方单位),所以飞镖落在阴影区域的概率是,故答案为:.【点睛】本题考查几何概率,求出整个图形的面积和阴影三角形的面积是正确解答的关键.考点三列举法求概率例题:(2022·广东深圳·八年级期末)从3、5、6、9四个数中随机取一个数,不放回,再随机取一个数,把第一个数作为十位数字,第二个数作为个位数字,组成一个两位数,则这个两位数是奇数的概率是______.【答案】【分析】从4个数中取两个数组成两位数,把所有情况全部列出来,找出其中的奇数,用奇数的个数除以两位数的总个数就是这个两位数是奇数的概率.【详解】从3、5、6、9这四个数中取两个数组成两位数有下列情况:35、36、39、53、56、59、63、65、69、93、95、96,共12种结果,其中奇数有9种结果,∴P(这个两位数是奇数)=故答案为:【点睛】本题考查了概率的计算,事件A发生的概率=,掌握概率的计算方法是解题的关键.【变式训练】(2022·吉林大学附属中学八年级期中)从,,3三个数中任取两个不同的数,作为点的坐标,则该点在第三象限的概率等于______.【答案】【分析】根据题意可利用列举法进行求解.【详解】解:从,,3三个数中任取两个不同的数,作为点的坐标,则所有的情况有:,,共有6种可能,符合该点在第三象限的有2种可能,所以其概率为;故答案为.【点睛】本题主要考查概率,熟练掌握利用列举法求解概率是解题的关键.考点四列表法、树状图求概率例题:(2022·辽宁鞍山·中考真题)2022年4月15日是第七个全民国家安全教育日,某校七、八年级举行了一次国家安全知识竞赛,经过评比后,七年级的两名学生(用,表示)和八年级的两名学生(用,表示)获得优秀奖.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是_________.(2)从获得优秀奖的学生中随机抽取两名分享经验,请用列表法或画树状图法,求抽取的两名学生恰好一名来自七年级、一名来自八年级的概率.【答案】(1);(2)作图见解析,.【分析】(1)直接根据概率公式求解即可;(2)画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)从获得优秀奖的学生中随机抽取一名分享经验,恰好抽到七年级学生的概率是,故答案为:;(2)树状图如下:由表知,共有12种等可能结果,其中抽取的两名学生恰好一名来自七年级、一名来自八年级的有8种结果,所以抽取的两名学生恰好一名来自七年级、一名来自八年级的概率为.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.【变式训练】(2022·辽宁朝阳·中考真题)某社区组织A,B,C,D四个小区的居民进行核酸检测,有很多志愿者参与此项检测工作,志愿者王明和李丽分别被随机安排到这四个小区中的一个小区组织居民排队等候.(1)王明被安排到A小区进行服务的概率是.(2)请用列表法或画树状图法求出王明和李丽被安排到同一个小区工作的概率.【答案】(1)(2)【分析】(1)根据概率公式求解即可;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.(1)解:王明被安排到A小区进行服务的概率是,故答案为:;(2)列表如下:A,B,C,D表示四个小区,ABCDA(A,A)(B,A)(C,A)(D,A)B(A,B)(B,B)(C,B)(D,B)C(A,C)(B,C)(C,C)(D,C)D(A,D)(B,D)(C,D)(D,D)由表知,共有16种等可能结果,其中王明和李丽被安排到同一个小区工作的有4种结果,所以王明和李丽被安排到同一个小区工作的概率为.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.考点五用概率判断游戏的公平性例题:(2022·黑龙江黑河·九年级期末)淘淘和明明玩骰子游戏,每人将一个各面分别标有1,2,3,4,5,6的正方体骰子掷一次,把两人掷得的点数相加,并约定:点数之和等于6,淘淘赢;点数之和等于7,明明赢;点数之和是其它数,两人不分胜负.(1)请你用“画树状图”或“列表”的方法分析说明此游戏是否公平.(2)请你基于(1)问中得到的数据,设计出一种公平的游戏规则.(列出一种即可)【答案】(1)此游戏不公平,见解析(2)点数之和等于6,淘淘赢;点数之和等于8,明明赢【分析】(1)画树状图求出淘淘和明明获胜的概率,再比较概率即可判定游戏是否公平;(2)设计一个两人获胜概率一样的游戏规则即可.(1)解:画树状图:由图可知,点数之和共有36种可能的结果,其中6出现5次,7出现6次,故P(和为6),P(和为7).P(和为6)<P(和为7),∴明明获胜的概率大,此游戏不公平;(2)解:如:“点数之和等于6,淘淘赢;点数之和等于8,明明赢;点数之和是其它数,两人不分胜负.”(答案不唯一)由(1)树状图可知:点数之和等于6出现5次,点数之和等于8也出现5次,∴P(和为6),P(和为8),∴P(和为6)=P(和为8),故游戏公平.【点睛】本题考查用列表法或画树状图法求概率,游戏公平性问题,熟练掌握用列表法或画树状图法求概率是解题的关键.【变式训练】(2022·湖南湘西·九年级期末)学完《概率初步》后,小诚和小明两个好朋友利用课外活动时间自制A、B两组卡片共5张,A组三张分别写有数字2,4,6,B组两张分别写有3,5.它们除了数字外没有任何区别.他俩提出了如下两个问题请你解答:(1)随机从A组抽取一张,求抽到数字为2的概率;(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果;(3)如果他俩还制定这样一个游戏规则:若选出的两数之积为3的倍数,则小诚获胜;否则小明获胜.请问这样的游戏规则对小诚、小明双方公平吗?请说明理由.【答案】(1)(2)见详解(3)因为小诚获胜的概率大于小明获胜的概率,所以不公平【分析】(1)用抽取张数除以A组总数即可求出概率;(2)通过树状图将每种情况列出来即可;(3)根据(2)所列出来所有情况,分别用乘积为3的倍数的总数与乘积不为3的倍数的总数除以所有情况,若概率不相等则不公平,反之则公平.(1)∵抽取1张,且A组共有3张∴故抽到数字2的概率为.(2)由题意画出树状图如下:∴共有(2,3)(2,5)(4,3)(4,5)(6,3)(6,5)6种等可能的结果.(3)∵乘积为3的倍数有(2,3)、(6,3)、(4,3)、(6,5)四种情况∴∵乘积不为3的倍数(2,5)、(4,5)两种情况∴∵∴小诚获胜概率大于小明获胜概率故这样的游戏规则不公平.【点睛】本题考查了概率的基本运算及比较,以及画树状图列出每一个事件,概率的计算公式是本题的关键.考点六概率在转盘抽奖中的应用例题:(2021·山东烟台·七年级期末)新冠疫情以来,各地政府为活跃消费市场,释放消费潜力,各商家采取各种促销以此来对冲疫情影响.某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券(若指向边界则重转),凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)某顾客在此商场购物220元,通过转转盘获得购物券和直接获得购物券,你认为哪种方式对顾客更合算?谈谈你的理由.【答案】(1);(2)选择转转盘对顾客更合算,理由见解析【分析】(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.【详解】解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)=;(2)∵P(红色)=,P(黄色)=,P(绿色)=,∴200×+100×+50×=40(元)∵40元>30元,∴选择转转盘对顾客更合算.【点睛】此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.【变式训练】(2022·山西大附中一模)某商场,为了吸引顾客,在“元旦”当天举办了商品有奖酬宾活动,凡购物满200元者,有两种奖励方案供选择:方案一:是直接获得20元的礼金卷;方案二:是得到一次摇奖的机会.规则如下:已知如图是由转盘和箭头组成的两个转盘A、B,这两个转盘除了颜色不同外,其它构造完全相同,摇奖者同时转动两个转盘,指针分别指向一个区域(指针落在分割线上时重新转动转盘),根据指针指向的区域颜色(如表)决定送礼金券的多少.指针指向两红一红一蓝两蓝礼金券(元)18918(1)请你用列表法(或画树状图法)求两款转盘指针分别指向一红区和一蓝区的概率.(2)如果一名顾客当天在本店购物满200元,若只考虑获得最多的礼品券,请你帮助分析选择哪种方案较为实惠.【答案】(1)(2)方案一,见解析;【分析】(1)根据列表法(或画树状图法)求指针分别指向一红区和一蓝区的概率即可;(2)根据(1)的树状图求出方案二的平均收益即可判断;(1)解:由题可知,转盘A中红色区域的圆心角的度数是蓝色区域的圆心角的度数的2倍,转盘B中蓝色区域的圆心角的度数是红色区域的圆心角的度数的2倍,故可画树状图如下:由树状图可知,共有9种等可能的情况,其中两个转盘指针一个指向红色区域、一个指向蓝色区域的情况有5种,∴P(一红区和一蓝区)=(2)由(1)中的树状图可知,指针指向两个红色区域有2种情况,指向两个蓝色区域也有2种情况,∴P(两个红区)=,P(两个蓝区)=,∴方案二的平均收益为:,∵13<20,∴若只考虑获得最多的礼品券,选择方案一更加实惠;【点睛】本题主要考查列表法(或画树状图法)求概率,掌握概率的求解方法是解题的关键.考点七用频率估计概率及应用例题:(2022·山东烟台·七年级期末)在一个不透明的盒子里装有只有颜色不同的黑、白两种球共60个.小亮做摸球实验,他将盒子里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n10020030050080010003000摸到白球的次数m651241783024815991803摸到白球的频率0.650.620.5930.6040.6010.5990.601(1)请估计:当n的值越来越大时,摸到白球的频率将会接近______;(精确到0.1)(2)假如你摸球一次,摸到白球的概率P(摸到白球)=______,摸到黑球的概率P(摸到黑球)=______;(3)请估算盒子里黑、白两种颜色的球各有多少个?【答案】(1)0.6(2)0.6,0.4(3)黑球有24只,白球有36只【分析】(1)根据次数很大时,频率会趋于稳定可得答案;(2)利用次数很大时,频率估计概率可得答案;(3)黑球个数=球的总数×得到黑球的概率.(1)解:当n的值越来越大时,摸到白球的频率将会接近0.6,故答案为:0.6;(2)根据频率估计概率可得,摸到白球的概率P(摸到白球)=0.6,摸到黑球的概率P(摸到黑球)=1-0.6=0.4,故答案为:0.6,0.4;(3)60×0.4=24,60-24=36.∴黑球有24只,白球有36只.【点睛】本题主要考查了利用频率估计概率,熟练掌握大量反复实验下频率稳定值即概率是解题的关键.【变式训练】(2022·山东枣庄·七年级期末)下面是某学校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n50010001500200030004000发芽的粒数m4719461425189828533812发芽频率0.9420.9460.9490.953(1)求表中,的值;(2)任取一粒这种植物种子,估计它能发芽的概率约是多少?(精确到0.01)(3)若该学校劳动基地需要这种植物幼苗7600棵,试估算需要准备多少粒种子进行发芽培育.【答案】(1);;(2)这种种子在此条件下发芽的概率约为0.95.(3)需要准备8000粒种子进行发芽培育.【分析】(1)根据发芽频率,代入对应的数值即可求解;(2)根据概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;(3)根据(2)中的概率,可以用发芽棵树幼苗棵树概率可得出结论.(1)解:;;(2)解:概率是大量重复试验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率;这种种子在此条件下发芽的概率约为0.95.(3)解:若该学校劳动基地需要这种植物幼苗7600棵,需要准备(粒种子进行发芽培育.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,解题的关键是掌握:频率所求情况数与总情况数之比.一、选择题1.(2021·湖北咸宁·九年级阶段练习)有4条线段长度分别为2cm,3cm,4cm,5cm,从中任意取三条线段能组成三角形的概率是()A. B. C. D.1【答案】A【分析】先列举出从四条线段中任取三条线段的所有情况,再让能组成三角形的情况数除以总情况数即为所求的概率.【详解】解:共有2、4、5;2、3、4;3、4、5;2、3、5;4种情况,其中2、3、5这种情况不能组成三角形,即能组成三角形的有3种,所以P(任取三条,能构成三角形)=.故选:A.【点睛】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,构成三角形的基本条件为两小边之和大于最大边.2.(2022·陕西西安·七年级期末)如图所示的是一个游戏转盘,自由转动转盘,当转盘停止转动后,指针落在数字“Ⅲ”所在区域内的概率是(
)A. B. C. D.【答案】D【分析】直接利用“Ⅲ”所示区域所占圆周角除以360,进而得出答案.【详解】解:由扇形统计图可得,指针落在数字“Ⅲ”所示区域内的概率是:,故D正确.故选:D.【点睛】本题主要考查了概率公式,正确理解概率的求法是解题关键.3.(2022·全国·九年级课时练习)在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有(
)A.12个 B.14个 C.18个 D.20个【答案】B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】解:设盒子中有红球x个,由题意可得:=0.3,解得:x=14,经检验,x=14是分式方程的解.估计口袋中红球约有14个.故选:B【点睛】此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.4.(2022·黑龙江大庆·八年级期末)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“油”、“城”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,取出的两个球上的汉字能组成“美城”的概率(
)A. B. C. D.【答案】C【分析】画树状图展示所有12种等可能的结果数,再找出取出的两个球上的汉字能组成“美城”的结果数,然后根据概率公式求解.【详解】解:画树状图如下:共有12种等可能的结果数,其中取出的两个球上的汉字能组成“美城”的结果数为2,所以取出的两个球上的汉字能组成“美城”的概率,故选:C.【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图适合两步或两步以上完成的事件,用到的知识点为:概率=所求情况数与总情况数之比.二、填空题5.(2022·黑龙江大庆·八年级期中)如图,四条直径把两个同心圆分成八等份,若往圆面投掷飞镖,则飞镖落在白色区域的概率是____.【答案】【分析】根据题意可知白色区域与灰色区域的面积相等,据此求解概率即可.【详解】解:∵两个同心圆被等分成八等份,飞镖落在每一个区域的机会是均等的,其中白色区域的面积占了其中的四等份,∴P(飞镖落在白色区域)=故答案为:.【点睛】本题主要考查了几何概率,正确理解题意得到白色区域占总面积的二分之一是解题的关键.6.(2021·浙江·杭州市建兰中学九年级阶段练习)一个盒子中装有10个红球和若干个白球,这些球除颜色外都相同,摇匀后从中随机摸出一个球,若摸到白球的概率为,则盒子中原有的白球的个数为_________个.【答案】25【分析】设盒子中原有的白球的个数为个,利用简单事件的概率计算公式可得一个关于x的方程,再解方程即可得.【详解】设盒子中原有的白球的个数为个,由题意得:,解得,经检验,是所列分式方程的解,则盒子中原有的白球的个数为25个,故答案为:25.【点睛】本题考查了简单事件的概率计算、分式方程的应用,熟练掌握简单事件的概率计算方法是解题关键.7.(2022·浙江杭州·九年级开学考试)在六张完全相同的卡片上,分别画有圆、矩形、菱形、等边三角形、直角三角形、正六边形,现从中随机抽取一张卡片,既是中心对称图形又是轴对称图形的概率是_____.【答案】【分析】确定既是中心对称又是轴对称图形的有几个图形,除以6即可求解.【详解】解:∵从中随机抽取一张卡片共有6种等可能结果,其中既是中心对称图形又是轴对称图形的有圆、矩形、菱形、正六边形这4种结果,∴从中随机抽取一张卡片,既是中心对称图形又是轴对称图形的概率是.故答案为:.【点睛】本题考查了轴对称图形和中心对称图形,列举法求概率,分辨出既是中心对称图形又是轴对称图形的图形数量是解题的关键.8.(2022·山西·九年级专题练习)2022年2月4日,北京冬奥会在北京一张家口隆重开幕,在北京冬奥会举办期间,小亮想到现场观看两场比赛,于是搜集了如图所示编号为A,B,C,D的四张图片(四张图片除正面图案不同外,图片大小、材质都相同),他将四张图片背面朝上洗匀后,随机抽取其中的两张,到现场观看抽中图片上所对应的比赛,则小亮抽中短道速滑和花样滑冰双人滑的概率是_____.【答案】【分析】根据题意,画出树状图,可得共有12种等可能的结果,其中小亮抽中短道速滑和花样滑冰双人滑的有2种,再根据概率公式计算,即可求解.【详解】解:根据题意,画出树状图,如下图:共有12种等可能的结果,其中小亮抽中短道速滑和花样滑冰双人滑的有2种,则小亮抽中短道速滑和花样滑冰双人滑的概率是.故答案为:【点睛】本题主要考查了利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.三、解答题9.(2021·河南·温县黄庄镇第一初级中学九年级期中)小明和小颖一起做游戏,他们把形状和大小完全相同的6张卡片分成两组,每组3张,分别标上1,2,3,将这两组卡片分别放入两个盒子中搅匀,再从中随机抽取一张.(1)请用画树状图(或列表法)求抽取的两张卡片数字之和为奇数的概率;(2)若抽取的两张卡片数字之和为奇数,则小明胜;若抽取的两张卡片数字之和为偶数;则小颖胜.试分析这个游戏是否公平,若不公平,谁获胜的可能性较大.【答案】(1)(2)这个游戏不公平,且小颖获胜的可能性较大【分析】(1)利用树状图(或列表法)求概率即可;(2)根据(1)中数据进行判断即可.(1)解:根据列表法如下:1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)P(抽取的两张卡片数字之和为奇数)=;(2)由(1)可知P(抽取的两张卡片数字之和为奇数)=,即小明胜的概率为;则小颖胜的概率.;∴这个游戏不公平,且小颖获胜的可能性较大.【点睛】本题主要考查根据树状图(或列表法)求概率及可能性的判断,掌握概率的求解方法是解题的关键.10.(2021·云南
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《钢结构的基本知识》课件
- 2024年度橱柜定制与合作伙伴关系合同
- 2024年度汽车修理工非全日制劳动合同3篇
- 2024年度建筑工程设计与施工管理合同
- 2024年度云计算数据中心设计与建设合同
- 2024年度光伏组件供应与安装合同2篇
- 幼儿园课件图
- 2024中国石化江汉油田分公司毕业生招聘71人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国外运华南限公司园招聘20人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人民财产保险股份限公司毕节分公司招聘理赔人员7人(贵州)易考易错模拟试题(共500题)试卷后附参考答案
- 太阳能光热发电站储热-传热用工作介质技术要求 熔融盐
- 2024年宁波市奉化区文化旅游集团有限公司招聘笔试冲刺题(带答案解析)
- 统编版教材一至六年级日积月累
- 2024年新修订公司法知识题库及答案
- 台球厅桌球俱乐部创业计划书课件模板
- 口腔科医疗污水处置登记表
- 燃气安全监测与预警系统应用
- 喉恶性肿瘤教学查房
- 北师大高考历史强基考试题目
- 北师大版四年级上册数学好玩
- 2024年共青团入团考试题库(附答案)
评论
0/150
提交评论