




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Explainability&
CommonRobustness姜育刚,马兴军,吴祖煊
1.
What
is
Machine
Learning
2.
Machine
Learning
Paradigms3.
Loss
FunctionsRecap:
week
14.
Optimization
MethodsMachine
Learning
Pipelinesetuptheinputsetuptheoptimisersetupthelossregularizationmakesdecisionregionsmootherlandscape
ofalossfunction,itvariesw.r.t.data,thefunctionitselfMachine
Learning
Pipelinesetuptheinputsetuptheoptimisersetupthelossregularizationmakesdecisionregionsmootherlandscape
ofalossfunction,itvariesw.r.t.data,thefunctionitselfModel?Deep
Neural
Networks/neural-network-zoo/;/articles/cc-machine-learning-deep-learning-architectures/Feed-Forward
Neural
NetworksFeed-ForwardNeuralNetworks
(FNN)Fully
Connected
Neural
Networks
(FCN)Multilayer
Perceptron
(MLP)The
simplest
neural
networkFully-connectedbetweenlayersFordatathathasNOtemporalorspatialorder/ConvolutionalNeuralNetworksForimagesordatawithspatialorderCan
stack
up
to
>100
layers/Neurons
in
3
dimensionsNeurons
in
one
flat
layerRecurrent
Neural
Networks/~shervine/teaching/cs-230/cheatsheet-recurrent-neural-networksTraditional
RNNTransformersVaswani,Ashish,etal."Attentionisallyouneed."
Advancesinneuralinformationprocessingsystems
30(2017)Transformer:
a
new
type
of
DNNs
based
on
attentionEncoderDecoderSelf-Attention
Explained/illustrated-self-attention-2d627e33b20aCNN
ExplainedLearns
different
levels
of
representations/A
brief
history
of
CNNs:LeNet,1990sAlexNet,2012ZFNet,2013GoogLeNet,2014VGGNet,2014ResNet,2015InceptionV4,2016ResNeXt,
2017ViT,
2021AnImageisWorth16x16Words:TransformersforImageRecognitionatScale,
ICLR
2021Explainable
AI深度学习可解释性学习机理推理机理泛化机理认知机理鲁棒性学习过程学习结果决策依据推理机制泛化原因泛化条件认知科学认知启发的智能普通鲁棒性对抗鲁棒性我们想要弄清楚下列问题:DNN是怎么学习的、学到了什么、靠什么泛化、在什么情况下行又在什么情况下不行?深度学习是否是真正的智能,与人类智能比谁更高级,它的未来是什么?是否存在大一统的理论,不但能解释而且能提高?Methodological
PrinciplesVisualizationAblationContrastModelComponentLayerOperationNeuronSuperclassClassTraining/Test
setSubsetSampleTrainingInferenceTransferReverseHow
to
Understand
Machine
LearningLearning
is
the
process
of
empirical
risk
minimization
(ERM)Learning
MechanismTraining/Test
Error/AccuracyPrediction
Confidence
Explanation
via
observation:
just
plot!Wang
et
al.
SymmetricCrossEntropyforRobustLearningwithNoisyLabels,
ICCV
2019.Learning
MechanismParameter
dynamicsGradient
dynamicsExplanation
via
dynamics
and
informationTRADI:Trackingdeepneuralnetworkweightdistributions,
ECCV
2020;
Shwartz-ZivR,TishbyN.Openingtheblackboxofdeepneuralnetworksviainformation[J].arXiv:1703.00810,2017.Learning
MechanismDecision
boundary,
learning
process
visualizationExplanation
via
dynamics
and
informationhttps://distill.pub/2020/grand-tour/(March16,2020);
/Learning
MechanismData
influence/valuation:
how
a
training
sample
impacts
the
learning
outcome?UnderstandingBlack-boxPredictionsviaInfluenceFunctions,
ICML,
2018;
PruthiG,LiuF,KaleS,etal.Estimatingtrainingdatainfluencebytracinggradientdescent.NeurIPS,2020.Datashapley:Equitablevaluationof
data
formachinelearning,
ICML,
2019.Influence
FunctionData
ShapleyInfluence
FunctionHow
model
parameter
would
change
if
a
sample
z
is
removed
from
the
training
set?UnderstandingBlack-boxPredictionsviaInfluenceFunctions,
ICML,
2018;
目标:
Cook,R.D.andWeisberg,S.Residualsandinfluenceinregression.NewYork:ChapmanandHall,1982
所以:
Training
Data
InfluenceHow
model
loss
on
z’
would
change
if
update
on
a
sample
z?PruthiG,LiuF,KaleS,etal.Estimatingtrainingdatainfluencebytracinggradientdescent.NeurIPS,2020First-order
approximation
of
the
above
(assuming
one
step
update
is
small)?Checkpoints
store
the
interim
updates所以:Understanding
the
Learned
ModelLoss
LandscapeDeep
featurest-SNE
plotMaaten
et
al.Visualizingdatausingt-SNE.
JMLR,
2008.https://distill.pub/2016/misread-tsne/?_ga=2.135835192.888864733.1531353600-1779571267.1531353600Understanding
the
Learned
ModelClass-wise
PatternsIntermediate
Layer
Activation
MapActivation/Attention
MapLi
et
al.
NeuralAttentionDistillation:ErasingBackdoorTriggersfromDeepNeuralNetwork,
ICLR
2021;
Zhao
etal.Whatdodeepnetslearn?class-wisepatternsrevealedintheinputspace.arXiv:2101.06898
(2021).One
predictive
pattern
for
each
classWhat
do
deep
nets
learn?Zhao,Shihao,etal."Whatdodeepnetslearn?class-wisepatternsrevealedintheinputspace."
arXiv:2101.06898
(2021).Goal:
understanding
knowledge
learned
by
a
model
of
a
particular
class.Method:
Extract
one
single
pattern
for
one
class,
then
what
this
pattern
would
be?
Other
considerations:
we
need
to
do
this
in
pixel
space,
as
they
are
more
interpretableHow
to
Find
the
Class-wise
Pattern:
a
canvas
imagePatterns
extracted
on
different
canvases
(red
rectangles)Class-wise
Patterns
RevealedPatterns
extracted
on
original,
non-robust,
robust
CIFAR-10and
patterns
of
adversarially
trained
modelsPredictive
power
of
different
sizes
of
patternsInference
MechanismClass
Activation
Map
(Grad-CAM)Guided
BackpropagationSelvaraju
etal.Grad-cam:Visualexplanationsfromdeepnetworksviagradient-basedlocalization.
ICCV
2017.Springenberg
et
al.
StrivingforSimplicity:TheAllConvolutionalNet,
ICLR
2015.Guided
BackpropagationSpringenbergetal.StrivingforSimplicity:TheAllConvolutionalNet,ICLR2015.
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709ReLU
forward
passReLU
backward
passDeconvolution
for
ReLUGuided
BackpropagationClass
Activation
Mapping
(CAM)Zhou
et
al.LearningDeepFeaturesforDiscriminativeLocalization.CVPR,2016.
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709GAP:
Global
Average
PoolingGrad-CAMB.Zhou,A.Khosla,L.A.,A.Oliva,andA.Torralba.LearningDeepFeaturesforDiscriminativeLocalization.InCVPR,2016;
/@chinesh4/generalized-way-of-interpreting-cnns-a7d1b0178709Grad-CAM
is
a
generalization
of
CAMCompute
neuron
importance:
Weighted
combination
of
activation
map,
then
interpolation:LIMELocalInterpretableModel-agnosticExplanations(LIME)Ribeiro
et
al.“Whyshoulditrustyou?”Explainingthepredictionsofanyclassifier.“
SIGKDD,
2016./marcotcr/lime
Integrated
GradientsSundararajanM,TalyA,YanQ.Axiomaticattributionfordeepnetworks,
ICML,2017./TianhongDai/integrated-gradient-pytorch
Integrate
the
gradients
along
the
wayCognitive
DistillationHuang
et
al.
DistillingCognitiveBackdoorPatternswithinanImage,
ICLR
2023MaskextractbycognitivedistillationUsefulandnon-usefulfeaturesUsefulfeatures:highlycorrelatedwiththetruelabelinexpectation,
soIfremoved,predictionchangeBackdoortriggerisausefulfeatureNon-usefulfeatures:notcorrelated
with
predictionIfremoved,predictiondoesnotchangeIlyas,Andrew,etal."Adversarialexamplesarenotbugs,theyarefeatures.”NeurIPS2019CognitiveDistillationObjective:distilltheminimalessenceofusefulfeaturesModelTotalVariationLossRandomnoisevectorOriginalimageMaskCognitivePatternCognitiveDistillationDistilledpatternsonbackdoored
samplesxcpmxHow
to
VerifyCognitivePatterns
are
EssentialBackdooredimageBinarizedmask{0,1}OriginalimageConstruct
simplified
backdoor
patterns:Backdoor
Patterns
Can
Be
Made
Simplerxcpmxxbd’Backdoor
Patterns
Can
Be
Made
SimplerSimplified
backdoor
patterns
also
work!L1Norm
Distributionofthe
Distilled
MaskDetect
Backdoor
SamplesAttacks:12backdoorattacksModels:ResNet-18,Pre-ActivationResNet-101,MobileNetv2,VGG-16,Inception,EfficientNet-b0Datasets:CIFAR-10/GTSRB/ImageNetsubsetEvaluation
metric:areaundertheROCcurve(AUROC)Detectionbaselines:Anti-BackdoorLearning(ABL)[2]ActivationClustering(AC)[3]Frequency[4]STRIP[5]SpectralSignatures[6]CD-L(logitslayer)andCD-F(lastactivationlayer)Superb
Detection
PerformanceCelebA
dataset:40binaryfacialattributes(gender,bald,andhaircolor)KnownbiasbetweengenderandblondhairApply
CDinthesamewayasbackdoordetectionSelectsubsetofsampleswithlowL1normExamineattributesofthesubsetCalculatedistributionshiftbetweensubsetandthefulldatasetDiscover
Biases
in
Facial
Recognition
ModelsDiscover
Biases
in
Facial
Recognition
ModelsMasks
distilled
for
predicting
each
attributeDiscover
Biases
in
Facial
Recognition
ModelsGeneralization
MechanismConvergenceGeneralizationDeep
Learning
TheoryConvergenceConvex
(Linear
model)Nonconvex
(DNN)Saddle
pointGeneralizationTraining
time‘Cat’Test
time‘Cat’?Traditional
theory:
simpler
model
is
better,
more
data
is
betterGeneralization
Theory/~ninamf/ML11/lect1117.pdf;/watch?v=zlqQ7VRba2YComponents
of
Generalization
Error
Boundsgeneralizationerror
empiricalerror
hypothesisclasscomplexity
confidencesample
sizeRHS:
for
all
terms,
the
lower
the
better:
small
training
errorsimpler
model
classmore
samples
less
confidenceGeneralization
TheoryZhang
et
al.
Understandingdeeplearningrequiresrethinkinggeneralization.
ICLR
2017.Small
training
error≠low
generalization
errorZero
training
error
was
achieved
on
purely
random
labels
(meaningless
learning)0
training
error
vs.
0.9
test
errorList
of
Existing
TheoriesRademacher
Complexity
bounds
(Bartlett
et
al.
2017)PAC-Bayes
bounds
(Dziugaite
and
Roy
2017)Information
bottleneck
(Tishby
and
Zaslavsky
2015)Neural
tangent
kernel/Lazy
training
(Jacot
et
al.
2018)Mean-field
analysis
(Chizat
and
Bach
2018)Doule
Descent
(Belkin
et
al.
2019)Entropy
SGD
(Chaudhari
et
al.
2019)/watch?v=zlqQ7VRba2YA
few
interesting
questions:Should
we
consider
the
role
of
data
in
generalization
analysis?Should
representation
quality
appear
in
the
generalization
bound?Generalization
is
about
math
(the
function
of
the
model)
or
knowledge?How
to
visualize
generalization?
Existing
approachestest
errorVisualization:
loss
landscape,
prediction
attribution,
etc.Training
->
test:
distribution
shift,
out-of-distribution
analysisNoisy
labels
in
test
data
–
questioning
data
quality
and
reliable
evaluationThe
remaining
questions:
how
generalization
happens?Math≠KnowledgeComputation
=
finding
patterns
or
understanding
the
underlying
knowledgeWhat
is
the
relation
of
computational
generalization
to
human
behavior?Cognitive
MechanismOpenAI
reveals
the
multimodal
neurons
in
CLIP/blog/multimodal-neurons/;/blog/clip/Cognitive
MechanismRitter
et
al.
CognitivePsychologyforDeepNeuralNetworks:AShapeBiasCaseStudy,
ICML,
2017cognitivepsychology
inspired
evaluation
of
DNNsshape
match
=
prob
means
shape
biasCognitive
MechanismGeirhos,Robert,etal."Shortcutlearningindeepneuralnetworks."
NatureMachineIntelligence
2.11(2020):665-673.DeepneuralnetworkssolveproblemsbytakingshortcutsCognitive
MechanismRajalingham,Rishi,etal.“Large-scale,high-resolutioncomparisonofthecorevisualobjectrecognitionbehaviorofhumans,monkeys,andstate-of-the-artdeepartificialneuralnetworks.”
JournalofNeuroscience
38.33(2018):7255-7269.
Rajalingham,Rishi,KailynSchmidt,andJamesJ.DiCarlo."Comparisonofobjectrecognitionbehaviorinhumanandmonkey."
JournalofNeuroscience
35.35(2015):12127-121
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 河北软件职业技术学院《兽医临床病理学》2023-2024学年第二学期期末试卷
- 江苏联合职业技术学院《电子设计与创新基础A》2023-2024学年第二学期期末试卷
- 上海震旦职业学院《BM概论》2023-2024学年第一学期期末试卷
- 2025届山东省青岛李沧区四校联考初三第一次诊断性考试试题化学试题试卷含解析
- 浙江经贸职业技术学院《医学统计学(包括SPSS软件、科研设计)》2023-2024学年第二学期期末试卷
- 武汉理工大学《测量与遥感》2023-2024学年第二学期期末试卷
- 上海市嘉定二中2025届高三第九次月考英语试题含解析
- 山西中医药大学《互换性与技术测量实验》2023-2024学年第二学期期末试卷
- 2025年江苏省南通市如东县高频错题卷(十二)英语试题含答案
- 内蒙古自治区乌兰察布市集宁区2025年高三高考最后一卷化学试题含解析
- 2024年贵州省普通高中学业水平选择性考试地理试题
- 客服营销面试试题及答案
- 2024年中国工商银行远程银行中心招聘考试真题
- 2025年我的师德小故事标准教案21
- 3 学会反思第二课时 养成反思好习惯 教学设计-2023-2024学年道德与法治六年级下册统编版
- 计划管理培训课件
- 《骑鹅旅行记》名著阅读读课件
- 2025上海烟草机械限责任公司高校毕业生招聘39人易考易错模拟试题(共500题)试卷后附参考答案
- 二零二五年度汽车销售业务员劳动合同(新车与二手车)
- 护理人员中医技术使用手册(2024版)
- 《外科护理学》课件- 乳腺癌术后淋巴水肿预防和护理
评论
0/150
提交评论