版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题08勾股定理之图形折叠模型综合应用(4大类型)解题思路解题思路(1)折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等.(2)利用线段关系和勾股定理,运用方程思想进行计算.【典例分析】【类型一:折叠构造直角三角形】【典例1】(保定二模)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.5【变式1-1】如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为()A.2.4 B.2.5 C.2.8 D.3【类型二:折叠构造三垂直图形】【典例2】(2020春•西城区校级期中)如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE折叠后点D恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得PA+PE值最小?若存在,请求出最小值:若不存在,请说明理由.【变式2】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【类型三:折叠构造全等三角形】【典例3】(思明区校级期中)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的纵坐标为()A.﹣2 B.﹣2.4 C.−22 D.【变式3-1】(红河州期末)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为.【变式3-2】(成华区期末)如图,在长方形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE所在直线折叠,使点B落在矩形内点B′处,连接CB′,则CB′的长为.【变式3-3】(2020•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG(1)求证:△ABG≌△AFG(2)求∠EAG的度数(3)求BG的长【类型三:折叠构造等腰三角】【典例4】(2020•碑林区校级月考)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处(1)试说明:B′E=BF(2)若AE=3,AB=4,求BF的长【变式4-1】(2019•潮南区一模)如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.【夯实基础】1.(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.62.(2022秋•槐荫区校级期末)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D.12cm23.(2021秋•洛江区期末)如图,在△ABC中,AB=10cm,AC=6cm,BC=8cm,若将AC沿AE折叠,使得点C与AB上的点D重合,则△AEB的面积为cm2.4.(2021秋•兴文县校级期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.5.(2021秋•峨边县期末)有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.6.(2022秋•新泰市期末)如图所示,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,你能求出CD的长吗?7.(2021秋•景德镇期中)如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上.(1)试判断△ABC的形状,并说明理由;(2)求折痕AD的长.【能力提升】8.已知矩形OABC的边长OA=4,AB=3,E是OA的中点,分别以所在的直线为x轴,y轴,建立如图所示的平面直角坐标系,直线l经过C、E两点.(1)求直线l的函数表达式;(2)如图,将矩形OABC中,将△COE沿直线l折叠后得到△CFE,点F在矩形OABC内部,延长CF交AB于G点.证明:GF=GA;(3)由上面的条件,求四边形AGFE的面积?专题08勾股定理之图形折叠模型综合应用(4大类型)解题思路解题思路(1)折叠的规律是,折叠部分的图形,折叠前后,关于折痕成轴对称,两图形全等.(2)利用线段关系和勾股定理,运用方程思想进行计算.【典例分析】【类型一:折叠构造直角三角形】【典例1】(保定二模)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使点A与BC的中点D重合,折痕为MN,则线段BN的长为()A.4 B.3 C.2 D.5【解答】设BN=x,由折叠的性质可得DN=AN=9﹣x∵D是BC的中点,∴BD=3在Rt△NBD中,x2+32=(9﹣x)2,解得x=4.即BN=4,选A【变式1-1】如图所示的三角形纸片中∠B=90°,AC=13,BC=5.现将纸片进行折叠,使得顶点D落在AC边上,折痕为AE.则BE的长为()A.2.4 B.2.5 C.2.8 D.3【答案】A【解答】解:∵∠B=90°,AC=13,BC=5,∴AB==12,设BE=x,由折叠的性质可得:CD=AC﹣AD=13﹣12=1,DE=BE=x,∠ADE=∠B=90°,∴EC=BC﹣BE=5﹣x,在Rt△DEC中,EC2=CD2+DE2,∴(5﹣x)2=1+x2,解得:x=2.4,∴BE=2.4.故选:A.【类型二:折叠构造三垂直图形】【典例2】(2020春•西城区校级期中)如图,长方形ABCD中,AB=8,BC=10,在边CD上取一点E,将△ADE折叠后点D恰好落在BC边上的点F处(1)求CE的长;(2)在(1)的条件下,BC边上是否存在一点P,使得PA+PE值最小?若存在,请求出最小值:若不存在,请说明理由.【解答】(1)长方形ABCD中,AB=8,BC=10∴∠B=∠BCD=90°,CD=AB=8,AD=BC=10由折叠知,EF=DE,AF=AD=8在Rt△ABF中,根据勾股定理得,BF=AF∴CF=BC﹣BF=4设CE=x,则EF=DE=CD﹣CE=8﹣x在Rt△ECF中,根据勾股定理得,CF2+CE2=EF2∴16+x2=(8﹣x)2,∴x=3,∴CE=3(2)如图,延长EC至E'使CE'=CE=3,连接AE'交BC于P此时,PA+PE最小,最小值为AE'∵CD=8,∴DE'=CD+CE'=8+3=11在Rt△ADE'中,根据勾股定理得,AE'=【变式2】如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米.(1)求BF与FC的长.(2)求EC的长.【解答】解:(1)∵△ADE折叠后的图形是△AFE,∴AD=AF,∠D=∠AFE,DE=EF.∵AD=BC=10cm,∴AF=AD=10cm.又∵AB=8cm,在Rt△ABF中,根据勾股定理,得AB2+BF2=AF2∴82+BF2=102,∴BF=6cm,∴FC=BC﹣BF=10﹣6=4cm.(2)设EC的长为xcm,则DE=(8﹣x)cm.在Rt△EFC中,根据勾股定理,得:FC2+EC2=EF2,∴42+x2=(8﹣x)2,即16+x2=64﹣16x+x2,化简,得16x=48,∴x=3,故EC的长为3cm.【类型三:折叠构造全等三角形】【典例3】(思明区校级期中)如图,四边形OABC是矩形,点A的坐标为(8,0),点C的坐标为(0,4),把矩形OABC沿OB折叠,点C落在点D处,则点D的纵坐标为()A.﹣2 B.﹣2.4 C.−22 D.【解答】∵点A的坐标为(8,0),点C的坐标为(0,4),∴OA=8,OC=4由折叠得:∠CBO=∠DBO,OD=OC=4,BD=BC,∠ODB=∠OCB∵四边形ABCO是矩形∴BC∥OA,OC=AB=4,∠OCB=∠BAO=90°,BC=OA=8∴∠CBO=∠BOA,∠ODE=90°,BD=OA,∴∠DBO=∠BOA∴BE=OE,∴DE=AE设AE=x,则BE=OE=8﹣x在Rt△ABE中,根据勾股定理得:42+x2=(8﹣x)2,解得:x=3即OE=5,DE=AE=3过D作DF⊥OA于F∵S△OED=12OD•DE=12OE•DF∴点D的纵坐标为﹣2.4,选B【变式3-1】(红河州期末)如图所示,有一块直角三角形纸片,∠C=90°,AC=8cm,BC=6cm,将斜边AB翻折,使点B落在直角边AC的延长线上的点E处,折痕为AD,则BD的长为.【解答】在Rt△ABC中,AB=AC根据折叠的性质可知:AE=AB=10,DE=BD∵AC=8,∴CE=AE﹣AC=2在Rt△CDE中,DE2=CD2+CE2,∴BD2=(BC﹣BD)2+CE2,∴BD2=(6﹣BD)2+4∴BD=【变式3-2】(成华区期末)如图,在长方形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE所在直线折叠,使点B落在矩形内点B′处,连接CB′,则CB′的长为.【解答】连接BB′交AE于H∵BC=6,点E为BC的中点,∴BE=3又∵AB=4,∴AE=AB2+BE2=4∵B′E=BE=EC∴∠BB′C=90°,根据勾股定理得,CB′=【变式3-3】(2020•张家港市期末)如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG(1)求证:△ABG≌△AFG(2)求∠EAG的度数(3)求BG的长【解答】(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°∵将△ADE沿AE对折至△AFE∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°又∵AG=AG在Rt△ABG和Rt△AFG中,AG=AGAB=AF,∴△ABG≌△AFG(HL(2)∵△ABG≌△AFG,∴∠BAG=∠FAG,∴∠FAG=12由折叠的性质可得:∠EAF=∠∠DAE,∴∠EAF=12∴∠EAG=∠EAF+∠FAG=12(∠DAF+∠BAF)=12(3)∵E是CD的中点,∴DE=CE=12CD设BG=x,则CG=6﹣x,GE=EF+FG=x+3∵GE2=CG2+CE2,∴(x+3)2=(6﹣x)2+32,解得x=2∴BG=2【类型三:折叠构造等腰三角】【典例4】(2020•碑林区校级月考)如图,把长方形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处(1)试说明:B′E=BF(2)若AE=3,AB=4,求BF的长【解答】(1)∵折叠,∴∠B'FE=∠EFB,BF=B'F∵AD∥BC∴∠B'EF=∠BFE,∴∠B'EF=∠B'FE∴B'E=B'F,∴BF=B'E(2)∵折叠,∴AE=A'E=3,AB=A'B'=4,∠A=∠A'=90°∴根据勾股定理可得B'E=5∵B'E=BF,∴BF=5【变式4-1】(2019•潮南区一模)如图,把长方形纸片ABCD沿EF折叠后,使得点D落在点H的位置上,点C恰好落在边AD上的点G处,连接EG.(1)△GEF是等腰三角形吗?请说明理由;(2)若CD=4,GD=8,求HF的长度.【解答】(1)∵长方形纸片ABCD∴AD∥BC∴∠GFE=∠FEC∵∠FEC=∠GEF∴∠GFE=∠GEF∴△GEF是等腰三角形(2)∵∠C=∠H=90°,HF=DF,GD=8设HF长为x,则GF长为(8﹣x)在Rt△FGH中,x2+42=(8﹣x)2解得x=3∴HF的长为3【夯实基础】1.(2022秋•大东区校级期末)如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.6【答案】C【解答】解:∵Rt△DC′B由Rt△DBC翻折而成,∴CD=C′D=AB=8,∠C=∠C′=90°,设DE=x,则AE=8﹣x,∵∠A=∠C′=90°,∠AEB=∠DEC′,∴∠ABE=∠C′DE,在Rt△ABE与Rt△C′DE中,,∴Rt△ABE≌Rt△C′DE(ASA),∴BE=DE=x,在Rt△ABE中,AB2+AE2=BE2,∴42+(8﹣x)2=x2,解得:x=5,∴DE的长为5.故选:C.2.(2022秋•槐荫区校级期末)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.3cm2 B.4cm2 C.6cm2 D.12cm2【答案】C【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.∵AD=9cm=AE+DE=AE+BE.∴BE=9﹣AE,根据勾股定理可知AB2+AE2=BE2.解得AE=4.∴△ABE的面积为3×4÷2=6.故选:C.3.(2021秋•洛江区期末)如图,在△ABC中,AB=10cm,AC=6cm,BC=8cm,若将AC沿AE折叠,使得点C与AB上的点D重合,则△AEB的面积为cm2.【答案】15【解答】解:∵AC2+BC2=62+82=100,AB2=100,∴AC2+BC2=AB2,∴△ABC是直角三角形.∵将AC沿AE折叠,使得点C与AB上的点D重合,∴EC=DE,AC=AD=6cm,∠ADE=∠C=∠BDE=90°,∴DB=4cm,设EC=DE=xcm,在Rt△BDE中,DE2+BD2=BE2,∴x2+42=(8﹣x)2,解得x=3.∴BE=BC﹣EC=8﹣3=5cm,∴S△ABE=×BE×AC=×5×6=15(cm2).故答案为:15.4.(2021秋•兴文县校级期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为.【答案】10【解答】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8﹣x,在Rt△AFD′中,(8﹣x)2=x2+42,解之得:x=3,∴AF=AB﹣FB=8﹣3=5,∴S△AFC=•AF•BC=10.故答案为:10.5.(2021秋•峨边县期末)有一块直角三角形纸片,两直角边分别为:AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上,且与AE重合,求CD的长.【解答】解:∵△ACD与△AED关于AD成轴对称,∴AC=AE=6cm,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB﹣AE=10﹣6=4,设CD=DE=xcm,则DB=BC﹣CD=8﹣x,在Rt△DEB中,由勾股定理,得x2+42=(8﹣x)2,解得x=3,即CD=3cm.6.(2022秋•新泰市期末)如图所示,有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿直线AD折叠,使它落在斜边AB上且与AE重合,你能求出CD的长吗?【解答】解:在Rt三角形中,由勾股定理可知:AB===10.由折叠的性质可知:DC=DE,AC=AE,∠DEA=∠C.∴BE=4,∠DEB=90°.设DC=x,则BD=8﹣x.在Rt△BDE中,由勾股定理得:BE2+ED2=BD2,即42+x2=(8﹣x)2.解得:x=3.∴CD=3.7.(2021秋•景德镇期中)如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上.(1)试判断△ABC的形状,并说明理由;(2)求折痕AD的长.【解答】解:(1)△ABC是直角三角形;(1分)∵AC2+BC2=52+122=169=AB2,(2分)∴∠C=90°;∴△ABC是直角三角形.(1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025浦发个贷借款质押合同
- 押金收取退还合同范例
- 供货欠账合同范例
- 大型工程承包合同范例
- 保险复议合同范例
- 墙面刷白工程合同范例
- 伊春租房合同范例
- 中国铁路采购合同范例
- 商品代理购买合同范例
- 五金焊接合同范例
- 全国第三届职业技能大赛(数字孪生应用技术)选拔赛理论考试题库(含答案)
- 应用数理统计知到智慧树章节测试课后答案2024年秋中国农业大学
- 大国三农II-农业科技版智慧树知到期末考试答案章节答案2024年中国农业大学
- 绿化养护服务投标方案(技术标)
- 2024年湛江市农业发展集团有限公司招聘笔试冲刺题(带答案解析)
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- JBT 1472-2023 泵用机械密封 (正式版)
- 二级公立医院绩效考核三级手术目录(2020版)
- 6人小品《没有学习的人不伤心》台词完整版
- 人教版六年级数学上册总复习教案
- 自闭症儿童行为检核表学前版
评论
0/150
提交评论