版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年林芝数学九年级第一学期开学联考试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,反比例函数的图象与菱形ABCD的边AD交于点,则函数图象在菱形ABCD内的部分所对应的x的取值范围是().A.<x<2或-2<x<- B.-4<x<-1C.-4<x<-1或1<x<4 D.<x<22、(4分)下列描述一次函数y=﹣2x+5图象性质错误的是()A.y随x的增大而减小B.直线与x轴交点坐标是(0,5)C.点(1,3)在此图象上D.直线经过第一、二、四象限3、(4分)如图,在矩形中,平分,交边于点,若,,则矩形的周长为()A.11 B.14 C.22 D.284、(4分)下列多项式中,能用完全平方公式分解因式的是()A.x2﹣x+1 B.1﹣2xy+x2y2 C.m2﹣2m﹣1 D.5、(4分)汽车油箱中有油,平均耗油量为,如果不再加油,那么邮箱中的油量(单位:)与行驶路程(单位:)的函数图象为()A. B. C. D.6、(4分)在RtΔABC中,∠ACB=90∘,CD⊥AB于D,CE平分∠ACD交AB于EA.BC=ECB.EC=BEC.BC=BED.AE=EC7、(4分)化简(﹣)2的结果是()A.±3 B.﹣3 C.3 D.98、(4分)在二次根式中,a能取到的最小值为()A.0 B.1 C.2 D.2.5二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在矩形中,,.若点是边的中点,连接,过点作交于点,则的长为______.10、(4分)如图,在▱ABCD中,AE⊥BC于点E,F为DE的中点,∠B=66°,∠EDC=44°,则∠EAF的度数为_____.11、(4分)已知:如图,在△ABC中,∠ACB=90°,D、E、F分别是AC、AB、BC的中点,若CE=8,则DF的长是________.12、(4分)已知,是二元一次方程组的解,则代数式的值为_____.13、(4分)在实数范围内分解因式:5-x2=_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.15、(8分)已知,AC是□ABCD的对角线,BM⊥AC,DN⊥AC,垂足分别是M、N.求证:四边形BMDN是平行四边形.16、(8分)如图,在矩形ABCD中,对角线AC的垂直平分线EF分别交AD、AC、BC于点E、O、F,连接CE和AF.(1)求证:四边形AECF为菱形.(2)若AB=4,BC=8,求菱形AECF的周长.17、(10分)如图,矩形OABC的顶点A,C在x,y轴正半轴上,反比例函数过OB的中点D,与BC,AB交于M,N,且已知D(m,2),N(8,n).(1)求反比例函数的解析式;(2)若将矩形一角折叠,使点O与点M重合,折痕为PQ,求点P的坐标;(3)如图2,若将沿OM向左翻折,得到菱形OQMR,将该菱形沿射线OB以每秒个单位向上平移t秒.①用t的代数式表示和的坐标;②要使该菱形始终与反比例函数图像有交点,求t的取值范围.18、(10分)某班级准备购买一些奖品奖励春季运动会表现突出的同学,奖品分为甲、乙两种,已知,购买一个甲奖品比一个乙奖品多用20元,若用400元购买甲奖品的个数是用160元购买乙奖品个数的一半.(1)求购买一个甲奖品和一个乙奖品各需多少元?(2)经商谈,商店决定给予该班级每购买甲奖品3个就赠送一个乙奖品的优惠,如果该班级需要乙奖品的个数是甲奖品的2倍还多8个,且该班级购买两种奖项的总费用不超过640元,那么该班级最多可购买多少个甲奖品?B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)在比例尺为1∶100000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离▲km.20、(4分)阅读下面材料:在数学课上,老师提出如下问题:尺规作图:作一条线段的垂直平分线.已知:线段AB.求作:线段AB的垂直平分线.小红的作法如下:如图,①分别以点A和点B为圆心,大于AB的长为半径作弧,两弧相交于点C;②再分别以点A和点B为圆心,大于AB的长为半径(不同于①中的半径)作弧,两弧相交于点D,使点D与点C在直线AB的同侧;③作直线CD.所以直线CD就是所求作的垂直平分线.老师说:“小红的作法正确.”请回答:小红的作图依据是_____.21、(4分)如图,▱ABCD的顶点B在矩形AEFC的边EF上,点B与点E、F不重合,若ΔACD的面积为4,则图中阴影部分两个三角形的面积和为22、(4分)将函数y=12x-2的图象向上平移_____个单位后,所得图象经过点(0,23、(4分)将正比例函数国象向上平移个单位。则平移后所得图图像的解析式是_____.二、解答题(本大题共3个小题,共30分)24、(8分)已知y是x的一次函数,当x=1时,y=1;当x=-2时,y=-14.(1)求这个一次函数的关系式;(2)在如图所示的平面直角坐标系中作出函数的图像;(3)由图像观察,当0≤x≤2时,函数y的取值范围.25、(10分)在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC的中点,连接DQ,MQ,求证:DM=2DQ.26、(12分)如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E和点F,且使BE=DF.(1)求证:四边形AECF是菱形;(2)若AC=4,BE=1,直接写出菱形AECF的边长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
根据反比例函数的图象是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,可得BC边与另一条双曲线的交点坐标,即可得答案.【详解】∵反比例函数是以原点为对称中心的中心对称图形,菱形是以对角线的交点为对称中心的中心对称图形,∴BC边与另一条双曲线的交点坐标为(1,-2),(4,),∴图象在菱形ABCD内的部分所对应的x的取值范围是-4<x<-1或1<x<4.故选C.本题主要考查反比例函数的性质及菱形的性质,反比例函数的图象是以原点为对称中心的中心对称图形;菱形是以对角线的交点为对称中心的中心对称图形;熟练掌握反比例函数及菱形图象的性质是解题关键.2、B【解析】
由于k=-2<0,则y随x的增大而减小可知A正确;把x=0,x=1分别代入直线的解析式可判断B、C的正误;再由b>0,则直线经过第一、二、四象限,故D正确.【详解】A、因为k=﹣2<0,则y随x的增大而减小,所以A选项的说法正确;B、因为x=0,y=5,直线与y轴交点坐标是(0,5),所以B选项的说法错误;C、因为当x=1时,y=﹣2+5=3,所以点(1,3)在此图象上,所以C选项的说法正确;D、因为k<0,b>0,直线经过第一、二、四象限,所以D选项的说法正确.故选:B.本题考查了一次函数的性质,熟知一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b)是解答此题的关键.3、C【解析】
根据勾股定理求出DC=4,证明BE=AB=4,即可求出矩形的周长;【详解】∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC=DE−CE=25−9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选C此题考查矩形的性质,解题关键在于求出DC=44、B【解析】
利用完全平方公式的结构特征判断即可.【详解】解:选项中的4个多项式中,能用完全平方公式分解因式的是1-2xy+x2y2=(1-xy)2,
故选B.此题考查了因式分解-运用公式法,熟练掌握完全平方公式是解本题的关键.5、B【解析】
根据“油箱中的油量=总油量﹣x公里消耗的油量”列出函数解析式,结合实际问题的情况即可求解.【详解】∵油箱中的油量=总油量﹣x公里消耗的油量,∴邮箱中的油量(单位:)与行驶路程(单位:)的函数关系式为:y=50﹣0.1x,为一次函数,且x的取值范围为0≤x≤500,∴符合条件的选项只有选项B.故选B.本题考查了根据实际问题建立数学模型及应用一次函数的知识解决实际问题,正确建立一次函数模型是解决问题的关键.6、C【解析】分析:根据同角的余角相等可得出∠BCD=∠A,根据角平分线的定义可得出∠ACE=∠DCE,再结合∠BEC=∠A+∠ACE、∠BCE=∠BCD+∠DCE即可得出∠BEC=∠BCE,利用等角对等边即可得出BC=BE,此题得解.详解:∵∠ACB=90°,CD⊥AB,∴∠ACD+∠BCD=90°,∠ACD+∠A=90°,∴∠BCD=∠A.∵CE平分∠ACD,∴∠ACE=∠DCE.又∵∠BEC=∠A+∠ACE,∠BCE=∠BCD+∠DCE,∴∠BEC=∠BCE,∴BC=BE.故选C.点睛:本题考查了直角三角形的性质、三角形外角的性质、余角、角平分线的定义以及等腰三角形的判定,通过角的计算找出∠BEC=∠BCE是解题的关键.7、C【解析】
根据二次根式的性质即可求出答案.【详解】原式=3,故选:C.本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.8、C【解析】
根据二次根式的定义求出a的范围,再得出答案即可.【详解】要使有意义,必须a-2≥0,即a≥2,所以a能取到的最小值是2,故选C.本题考查了二次根式的定义,能熟记二次根式的定义是解此题的关键.二、填空题(本大题共5个小题,每小题4分,共20分)9、【解析】
根据S△ABE=S矩形ABCD=3=•AE•BF,先求出AE,再求出BF即可.【详解】解:如图,连接BE.
∵四边形ABCD是矩形,
∴AB=CD=2,BC=AD=3,∠D=90°,
在Rt△ADE中,AE=∵S△ABE=S矩形ABCD=3=•AE•BF,
∴BF=.故答案为:.本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题关键是灵活运用所学知识解决问题,用面积法解决有关线段问题是常用方法.10、68°【解析】
只要证明∠EAD=90°,想办法求出∠FAD即可解决问题.【详解】解:∵四边形ABCD是平行四边形,∴∠B=∠ADC=66°,AD∥BC,∵AE⊥BC,∴AE⊥AD,∴∠EAD=90°,∵F为DE的中点,∴FA=FD=EF,∵∠EDC=44°,∴∠ADF=∠FAD=22°,∴∠EAF=90°﹣22°=68°,故答案为:68°.本题考查平行四边形的性质、直角三角形斜边中线定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.11、1【解析】
根据直角三角形的性质得到AB=2CE=16,根据三角形中位线定理计算即可.【详解】∵∠ACB=90°,E是AB的中点,∴AB=2CE=16,∵D、F分别是AC、BC的中点,∴DF=AB=1.本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.12、1【解析】
依据平方差公式求解即可.【详解】,,.故答案为:1.本题主要考查的是二元一次方程组的解和平方差公式,发现所求代数式与已知方程组之间的关系是解题的关键.13、(+x)(-x)【解析】
理解实数范围内是要运算到无理数为止,即可解题.【详解】解:5-x2=(+x)(-x)本题考查了因式分解,属于简单题,注意要求是实数范围内因式分解是解题关键.三、解答题(本大题共5个小题,共48分)14、(1)详见解析;(2)详见解析.【解析】
(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【详解】(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.15、证明见解析【解析】
由题意即可推出DN∥BM,通过求证△ADN≌△CBM即可推出DN=BM,便知四边形BMDN是平行四边形.【详解】证明:∵BM⊥AC,DN⊥AC,
∴∠DNA=∠BMC=90°,
∴DN∥BM,
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴∠DAN=∠BCM,
∴△ADN≌△CBM,
∴DN=BM,
∴四边形BMDN是平行四边形.本题主要考查平行四边形的判定与性质、全等三角形的判定与性质,熟悉相关性质是解题的关键.16、(1)详见解析;(2)20【解析】
(1)求出AO=OC,∠AOE=∠COF,根据平行线的性质得出∠EAO=∠FCO,根据ASA推出:△AEO≌△CFO;根据全等得出OE=OF,推出四边形是平行四边形,再根据EF⊥AC即可推出四边形是菱形;(2)设菱形AECF的边长为x由题意得:AF=x,CF=x,BF=8-x,再利用勾股定理进行计算即可解答.【详解】(1)∵四边形ABCD为矩形,∴AD∥BC,∴∠EAC=∠ACF,又∵EF是AC的垂直平分线,∴OA=OC,∠AOE=∠COF=90°,在△AOE和△COF中,∠AOE=∠COFOC=OA∴△AOE≌△COF∴OE=OF∵OA=OC,∴四边形AECF为平行四边形.∵AC⊥EF.∴四边形AECF为菱形(2)解:设菱形AECF的边长为x由题意得:AF=x,CF=x.又∵BF=BC-CF,BC=8,∴BF=8-x,∵四边形ABCD为矩形,∴∠B=90°,在Rt△ABC中,由勾股定理得:又∵AB=4,BF=8-x,AF=x,∴16+(8-x)2=∴菱形AECF的周长=5×4=20此题考查线段垂直平分线的性质,菱形的判定与性质,矩形的性质,解题关键在于证明△AEO≌△CFO.17、(1);(2);(3)①;;②【解析】
(1)由题意得OA=8,因为D为OB的中点,得出D(4,2),代入反比例函数的解析式可得;
(2)求出M点的坐标,再利用勾股定理求出OP的长,可得点P坐标;
(3)①过点O′作O′T⊥x轴,垂足为T,可得△OO′T∽△OBA,进而可表示的坐标,利用勾股定理求出CR,可表示的坐标;
②把R′(2t-3,t+4)代入反比例函数的解析式解答即可.【详解】解:(1)∵N(8,n),四边形OABC是矩形,
∴OA=8,
∵D为OB的中点,
∴D(4,2),
∴2=,则k=8,
∴y=;
(2)∵D(4,2),
∴点M纵坐标为4,
∴4=,则x=2,
∴M(2,4),
设OP=x,则MP=x,CP=4-x,CM=2,由勾股定理得:(4-x)2+22=x2,
解得:x=,即OP=,
∴P(0,);(3)①过点O′作O′T⊥x轴,垂足为T.
可得△OO′T∽△OBA,
∵,
∴=,
∵OO′=,
∴OT=2t,O′T=t,
∴O′(2t,t);
设CR=x,则OR=RM=x+2,
∴x2+42=(x+2)2,解得x=3,即CR=3,
∴R′(2t-3,t+4);②∵R′(2t-3,t+4),
根据题意得:t+4=,
化简得:2t2+5t-20=0,解得:或(舍去),本题主要考查的是反比例函数的综合应用,解答本题主要应用了矩形的性质、勾股定理、相似三角形的判定和性质,求得CR的长是解题的关键.18、(1)购买一个甲奖品需元,买一个乙奖品需要元;(2)该班级最多可购买个甲奖品.【解析】
(1)设买一个乙奖品需要x元,购买一个甲奖品需元,根据题意用400元购买甲奖品的个数是用160元购买乙奖品个数的一半,列出分式方程,然后求解即可;(2)设该班级可购买a个甲奖品,根据题意列出一元一次不等式,然后求解即可.【详解】解:设买一个乙奖品需要元,购买一个甲奖品需元,由题意得:,经检验是原方程的解,则答:购买一个甲奖品需元,买一个乙奖品需要元;设该班级可购买个甲奖品,根据题意得,解得,答:该班级最多可购买个甲奖品.分式方程和一元一次不等式在实际生活中的应用是本题的考点,根据题意列出方程是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、15【解析】
解:设两地的实际距离为xcm,根据题意得:,解得:x=1500000,∵1500000cm=15km,∴两地的实际距离15km.20、到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.【解析】分析:根据线段垂直平分线的作法即可得出结论.详解:如图,∵由作图可知,AC=BC=AD=BD,∴直线CD就是线段AB的垂直平分线.故答案为:到线段两个端点距离相等的点在这条线段的垂直平分线上;两点确定一条直线.点睛:本题考查的是作图-基本作图,熟知线段垂直平分线的作法是解答此题的关键.21、1【解析】
根据平行四边形的性质求出AD=BC,DC=AB,证△ADC≌△CBA,推出△ABC的面积是1,求出AC×AE=8,即可求出阴影部分的面积.【详解】∵四边形ABCD是平行四边形,∴AD=BC,DC=AB,∵在△ADC和△CBA中AD=BCDC=AB∴△ADC≌△CBA,∵△ACD的面积为1,∴△ABC的面积是1,即12AC×AE=8,∴阴影部分的面积是8﹣1=1,故答案为1.本题考查了矩形性质,平行四边形性质,全等三角形的性质和判定的应用,主要考查学生运用面积公式进行计算的能力,题型较好,难度适中.22、3【解析】
根据一次函数平移“上加下减”,即可求出.【详解】解:函数y=12图象需要向上平移1-(-2)=3个单位才能经过点(0,1).故答案为:3.本题考查了一次函数的平移,将直线的平移转化成点的平移是解题的关键.23、y=-1x+1【解析】
根据一次函数图象平移的性质即可得出结论.【详解】解:正比例函数y=-1x的图象向上平移1个单位,则平移后所得图象的解析式是:y=-1x+1.
故答案为:y=-1x+1.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的法则是解答此题的关键.二、解答题(本大题共3个小题,共30分)24、(1)y=5x-4;(2)详见解析;(3)-4≤y≤1.【解析】
(1)设函数解析式y=kx+b,将题中的两个条件代入即可得出解析式;(2)根据题意可确定函数上的两个点(1,1)、(-2,-14),运用两点法即可确定函数图象.(3)根据图象可知,当0≤x≤2时,y的取值范围是-4≤x≤1.【详解】解:(1)设函数的关系式为y=kx+b,则由题意,得解得,∴一次函数的关系式为y=5x-4;(2)所作图形如图.(3)∵0≤x≤2,∴y的取值范围是:-4≤y≤1.故答案为:(1)y=5x-4;(2)图形见解析;(3)-4≤y≤1.本题考查待定系数法求函数解析式及一次函数图象上点的坐标特征,难度不大,注意掌握一次函数的性质.25、(1)2(2)证明见解析【解析】试题分析:(1)如图1,连接对角线BD,先证明△ABD是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度对讲机系统集成服务合同
- 2024年度技术转让合同服务内容扩展
- 近摄镜市场发展预测和趋势分析
- 连衣裙市场发展预测和趋势分析
- 2024年度版权购买合同(具体权益内容)
- 浇铸用车市场发展现状调查及供需格局分析预测报告
- 插线板市场发展现状调查及供需格局分析预测报告
- 2024年度无人机遥感监测服务合同
- 2024年度别克汽车金融贷款服务合同
- 气动开窗器市场需求与消费特点分析
- 【课件】Unit4Readingforwriting课件高中英语人教版(2019)必修第二册
- 学生学习过程评价量表
- 1.我们生活的世界
- 第9章 政府单位预算会计核算
- 欧陆590系列数字直流式调速器中文说明书
- 分布函数(课堂PPT)
- 古城南京的城市演变与现代规划
- 测绘地理信息业务档案保管期限表(20150305)..
- 国家开放大学电大《物流信息系统管理》期末题库及答案
- 精忠报国歌谱
- 固体火箭发动机制造工艺
评论
0/150
提交评论