![2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题【含答案】_第1页](http://file4.renrendoc.com/view12/M08/0A/1E/wKhkGWcJ5cyACGHOAAGIUGx8qpM260.jpg)
![2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题【含答案】_第2页](http://file4.renrendoc.com/view12/M08/0A/1E/wKhkGWcJ5cyACGHOAAGIUGx8qpM2602.jpg)
![2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题【含答案】_第3页](http://file4.renrendoc.com/view12/M08/0A/1E/wKhkGWcJ5cyACGHOAAGIUGx8qpM2603.jpg)
![2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题【含答案】_第4页](http://file4.renrendoc.com/view12/M08/0A/1E/wKhkGWcJ5cyACGHOAAGIUGx8qpM2604.jpg)
![2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题【含答案】_第5页](http://file4.renrendoc.com/view12/M08/0A/1E/wKhkGWcJ5cyACGHOAAGIUGx8qpM2605.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共3页2024年辽宁省本溪市九年级数学第一学期开学考试模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在平面直角坐标系中,点、的坐标分别是.,点在直线上,将沿射线方向平移后得到.若点的横坐标为,则点的坐标为()A. B. C. D.2、(4分)在△ABC中,AC9,BC12,AB15,则AB边上的高是()A.365 B.1225 C.93、(4分)下列等式成立的是()A. B. C. D.4、(4分)如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的A. B. C. D.5、(4分)若关于x的方程x2-bx+6=0的一根是x=2,则另一根是()A.x=-3 B.x=-2 C.x=2 D.x=36、(4分)已知点(﹣2,y1),(﹣1,y2),(1,y3)都在直线y=﹣3x+2上,则y1,y2,y3的值的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3>y1>y2D.y1>y2>y37、(4分)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都是9.5环,方差分别为S甲2=0.54,S乙2=A.甲 B.乙 C.丙 D.丁8、(4分)为了解我市参加中考的15000名学生的视力情况,抽查了1000名学生的视力进行统计分析,下面四个判断正确的是()A.15000名学生是总体B.1000名学生的视力是总体的一个样本C.每名学生是总体的一个个体D.以上调查是普查二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在四边形ABCD中,∠A=90°,M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),E、F分别为DM,MN的中点,若AB=23, 10、(4分)Rt△ABC中,∠C=90°,∠B=30°,则AC与AB两边的关系是_____.11、(4分)当时,二次根式的值是___________.12、(4分)在直角三角形ABC中,∠B=90°,BD是AC边上的中线,∠A=30°,AB=5,则△ADB的周长为___________13、(4分)已知直角梯形ABCD中,AD∥BC,∠A=90°,AB=,CD=5,那么∠D的度数是_____.三、解答题(本大题共5个小题,共48分)14、(12分)如图,小明家所在区域的部分平面示意图,请你分别以正东、正北为轴、轴正方向,在图中建立平面直角坐标系,使汽车站的坐标是,(1)请你在图中画出所建立的平面直角坐标系;(2)用坐标说明学校和小明家的位置;(3)若图中小正方形的边长为,请你计算小明家离学校的距离.15、(8分)类比、转化等数学思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.已知.(1)观察发现如图①,若点是和的角平分线的交点,过点作分别交、于、,填空:与、的数量关系是________________________________________.(2)猜想论证如图②,若点是外角和的角平分线的交点,其他条件不变,填:与、的数量关系是_____________________________________.(3)类比探究如图③,若点是和外角的角平分线的交点.其他条件不变,则(1)中的关系成立吗?若成立,请加以证明;若不成立,请写出关系式,再证明.16、(8分)为推动阳光体育活动的广泛开展,引导学生积极参加体育锻炼,学校准备购买一批运动鞋供学生借用.现从各年级随机抽取了部分学生的鞋号,绘制了如下的统计图①和图②,请根据图中提供的信息,解答下列问题:(1)本次接受随机抽样调查的学生人数为人,图①中的m的值为,图①中“38号”所在的扇形的圆心角度数为;(2)本次调查获取的样本数据的众数是,中位数是;(3)根据样本数据,若学校计划购买200双运动鞋,建议购买36号运动鞋多少双?17、(10分)如图,在矩形中,、相交于点,过点作的平行线交的延长线于点.(1)求证:.(2)过点作于点,并延长交于点,连接.若,,求四边形的周长.18、(10分)某中学八⑴班、⑵班各选5名同学参加“爱我中华”演讲比赛,其预赛成绩(满分100分)如图所示:(1)根据上图填写下表:平均数中位数众数八(1)班8585八(2)班8580(2)根据两班成绩的平均数和中位数,分析哪班成绩较好?(3)如果每班各选2名同学参加决赛,你认为哪个班实力更强些?请说明理由.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为________.20、(4分)甲、乙两人各进行10次射击比赛,平均成绩均为9环,方差分别是:,则射击成绩较稳定的是________(选填“甲”或“乙”).21、(4分)如图,在平行四边形ABCD中,∠A=70°,DC=DB,则∠CDB=__.22、(4分)如图,矩形ABCD中,对角线AC,BD相交于点O,若再补充一个条件就能使矩形ABCD成为正方形,则这个条件是(只需填一个条件即可).23、(4分)在△ABC中,边AB、BC、AC的垂直平分线相交于P,则PA、PB、PC的大小关系是________.二、解答题(本大题共3个小题,共30分)24、(8分)如图,已知是平行四边形中边的中点,是对角线,连结并延长交的延长线于点,连结.求证:四边形是平行四边形.25、(10分)如图,在△ABC中,AD=15,AC=12,DC=9,点B是CD延长线上一点,连接AB,若AB=1.求:△ABD的面积.26、(12分)如图,已知在中,分别是的中点,连结.(1)求证:四边形是平行四边形;(2)若,求四边形的周长.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、C【解析】
由点的横坐标为及点在直线上,可得点(2,4)得出图形平移规律进行计算即可.【详解】解:由点的横坐标为及点在直线上当x=2时,y=4∴(2,4)∴该图形平移规律为沿着x轴向右平移两个单位,沿着y轴向上平移4个单位∴(6,4)故答案选:C本题考查了由函数图像推出点坐标,图形的平移规律,掌握图形的平移规律与点的平移规律是解决的关键.2、A【解析】
首先由题目所给条件判断△ABC是直角三角形,再按照面积法求解即可.【详解】解:∵AC2+B∴AC∴△ABC是直角三角形且∠C=90∴由直角三角形面积的计算方法S=12AC·BC=12故选A.本题考查了勾股定理的逆定理和用面积法求直角三角形斜边上的高的知识,属于基础题型.3、B【解析】
根据二次根式的加减、乘除运算法则以及二次根式的性质解答即可.【详解】解:A.不是同类二次根式,故A错误;B.,故B正确;C.,故B错误;D.,故D错误.故答案为B.本题考查了二次根式的加减、乘除运算法则以及二次根式的性质,牢记并灵活运用运算法则和性质是解答本题的关键.4、C【解析】
解:∵AB被截成三等分,∴△AEH∽△AFG∽△ABC,∴,∴S△AFG:S△ABC=4:9S△AEH:S△ABC=1:9∴S阴影部分的面积=S△ABC﹣S△ABC=S△ABC故选C.5、D【解析】
把x=2代入方程x2-bx+6=0,求出b,得出方程,再求出方程的解即可.【详解】解:把x=2代入方程x2-bx+6=0得:4-2b+6=0,解得:b=5,即方程为x2-5x+6=0,解得:x=2或3,即方程的另一个根是x=3,故选:D.此题考查解一元二次方程,一元二次方程的解和根与系数的关系,能求出b的值是解题的关键.6、D【解析】k=-3<0,所以函数y随x增大而减小,所以y1>y2>y3,所以选D.7、D【解析】
方差越大,则射击成绩的离散程度越大,稳定性也越小;方差越小,则射击成绩的离散程度越小,稳定性越好,由此即可判断.【详解】解:∵S甲2=0.54,S乙2=0.61,S丙2=0.60,S丁2=0.50,
∴丁的方差最小,成绩最稳定,
故选:D.本题考查方差的意义,记住方差越小数据越稳定.8、B【解析】
总体是参加中考的15000名学生的视力情况,故A错误;1000名学生的视力是总体的一个样本,故B正确;每名学生的视力情况是总体的一个样本,故C错误;以上调查应该是抽查,故D错误;故选B.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
连接BD、DN,根据勾股定理求出BD,根据三角形中位线定理解答.【详解】解:连接BD、DN,在RtΔABD中,∵点E、F分别为DM、MN的中点,∴EF=1由题意得,当点N与点B重合时,DN最大,∴DN的最大值是4,∴EF长度的最大值是1,故答案为:1.本题考查的是三角形中位线定理、勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.10、AB=2AC.【解析】
解:如图所示,在Rt△ABC中,∠C=90°,∠B=30°,则AB=2AC.故答案为AB=2AC.本题考查了在直角三角形中,30°所对的直角边等于斜边的一半,应熟练掌握.11、2【解析】当时,===2,故答案为:2.12、【解析】
先作出Rt△ABC,根据∠A=30°,AB=5,可求得BC、AC的长度,然后根据直角三角形斜边中线等于斜边的一半求出中线BD的长度,继而可求得△ADB的周长.【详解】解:如图所示,∵∠ABC=90°,∠A=30°,AB=5,∴设BC=x,则AC=2x∵∴∴x=5∴BC=5,AC=10在直角三角形ABC中,∠ABC==90°,BD是AC边上的中线∴∴△ADB的周长为:故答案为:本题考查了勾股定理、含30°角的直角三角形和直角三角形斜边的中线等知识,解答本题的关键是根据勾股定理求出直角边的长度.13、60°或120°【解析】
该题根据题意分为两种情况,首先正确画出图形,根据已知易得直角三角形DEC的直角边和斜边的长,然后利用三角函数,即可求解.【详解】①如图1,过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠A=90°,∴∠B=90°,∴四边形ABED是矩形,∴∠ADE=90°,AB=DE=,∵CD=5,∴sinC==,∴∠C=60°,∴∠EDC=30°,∴∠ADC=90°+30°=120°;②如图2,此时∠D=60°,即∠D的度数是60°或120°,故答案为:60°或120°.该题重点考查了三角函数的相关知识,解决该题的关键一是:能根据题意画出两种情况,二是:把该题转化为三角函数问题,从而即可求解.三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)学校(-2,-2),小明家(1,2);(3)2500m【解析】
(1)根据题意确定坐标原点的位置,然后建立坐标系;(2)根据平面直角坐标系可以直接得到答案;(3)利用勾股定理解答即可.【详解】解:(1)如图所示:(2)学校(-2,-2)小明家(1,2)(3)小明家离学校的距离为:.本题考查了坐标确定位置,熟练掌握平面直角坐标系中确定点的位置的方法是解题的关键.15、(1);(2);(3)不成立,,证明详见解析.【解析】
(1)根据平行线的性质与角平分线的定义得出
∠EDB=∠EBD
,
∠FCD=∠FDC
,从而得出
EF
与
BE
、
CF
的数量关系;(2)根据平行线的性质与角平分线的定义得出
∠EDB=∠EBD
,
∠FCD=∠FDC
,从而得出
EF
与
BE
、
CF
的数量关系;(3)根据平行线的性质与角平分线的定义得出
EF
与
BE
、
CF
的数量关系.【详解】(1)EF=BE+CF.∵
点
D
是
∠ABC
和
∠ACB
的角平分线的交点,∴∠EBD=∠DBC
,
∠FCD=∠DCB
.∵EF∥BC
,∴∠EDB=∠DBC
,
∠FDC=∠DCB
.∴
∠EDB=∠EBD
,
∠FCD=∠FDC
.∴EB=ED
,
DF=CF
.∴EF=BE+CF
.故本题答案为:
EF=BE+CF
.(2)EF=BE+CF.
∵D
点是外角
∠CBE
和
∠BCF
的角平分线的交点,∴∠EBD=∠DBC
,
∠FCD=∠DCB
.∵EF∥BC
,∴∠EDB=∠DBC
,
∠FDC=∠DCB
.∴
∠EDB=∠EBD
,
∠FCD=∠FDC
.∴EB=ED
,
DF=CF
.∴EF=BE+CF
.故本题答案为:
EF=BE+CF
.(3)不成立;
EF=BE−CF
,证明详见解析.∵
点
D
是
∠ABC
和外角
∠ACM
的角平分线的交点,∴∠EBD=∠DBC
,
∠ACD=∠DCM
.∵EF∥BC
,∴∠EDB=∠DBC
,
∠FDC=∠DCM
.∴∠EBD=∠EDB
,
∠FDC=∠FCD
.∴BE=ED
,
FD=FC
.∵EF=ED−FD
,∴EF=BE−CF
.本题考查了平行线的性质,等腰三角形的判定,以及角平分线的定义等知识.解决本题的关键突破口是掌握平行线的性质与等腰三角形的概念.16、(1)40,15,1°;(2)35,1;(3)50双.【解析】
(1)根据条形统计图求出总人数即可;由扇形统计图以及单位1,求出m的值即可;用“38号”的百分比乘以10°,即可得圆心角的度数;(2)找出出现次数最多的即为众数,将数据按照从小到大顺序排列,求出中位数即可;(3)根据题意列出算式,计算即可得到结果.【详解】(Ⅰ)本次接受随机抽样调查的学生人数为6+12+10+8+4=40,图①中m的值为100-30-25-20-10=15;10°×10%=1°;故答案为:40,15,1°.(2)∵在这组样本数据中,35出现了12次,出现次数最多,∴这组样本数据的众数为35;∵将这组样本数据从小到大得顺序排列,其中处于中间的两个数都为1,∴中位数为(1+1)÷2=1;故答案为:35,1.(3)∵在40名学生中,鞋号为1的学生人数比例为25%,∴由样本数据,估计学校各年级中学生鞋号为1的人数比例约为25%,则计划购买200双运动鞋,1号的双数为:200×25%=50(双).此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.17、(1)证明见解析;(2).【解析】
(1)根据两组对边分别平行且的四边形是平行四边形判断出四边形BEAD是平行四边形,再根据平行四边形对边相等和矩形对边相等即可得出结论;(2)根据矩形的对角线相等且互相平分及直角三角形斜边上的中线等于斜边的一半可得OB=OC=OG,利用勾股定理求出BC,CO的长.证明BF为△CEG的中位线,再由三角形中位线定理可得EG=2BF,最后根据四边形的周长公式列式计算即可得解.【详解】(1)∵AE∥DB,AD∥EB,∴四边形BEAD是平行四边形,∴BE=DA.∵四边形ABCD是矩形,∴BC=AD,∴BE=BC;(2)∵四边形ABCD是矩形,∴OA=OB=OCAC.∵AE∥DB,CF⊥BO,∴CG⊥AE,∴GO为Rt△CGA斜边的中线,∴GOAC=OB,∴BO+OG=BD.∵CF=3,BF=1,∴BE=BC=.设CO=x,则FO=BO-BF=x-1.在Rt△CFO中,∵,∴,解得:x=7.5,∴BO+OG=BD=2x=2.∵OG=CO,OF⊥CG,∴FG=CF=3.∵CB=BE,∴BF为△CEG的中位线,∴EG=2BF=3,∴四边形BOGE的周长=BO+OG+EG+EB=2+3+=.本题考查了平行四边形的判定与性质,矩形的性质,直角三角形斜边上的中线等于斜边的一半以及三角形中位线定理,熟记各性质并利用勾股定理列出方程是解题的关键.18、(1)85,1;(2)八⑴班的成绩较好;(3)八⑵班实力更强些,理由见解析【解析】
(1)根据中位数和众数的定义填空.
(2)根据平均数和中位数比较两个班的成绩.
(3)比较每班前两名选手的成绩即可.【详解】解:(1)由条形图数据可知:中位数填85,众数填1.故答案为:85,1;(2)因两班平均数相同,但八(1)班的中位数高,所以八(1)班的成绩较好.(3)如果每班各选2名选手参加决赛,我认为八(2)班实力更强些.因为,虽然两班的平均数相同,但在前两名的高分区中八(2)班的成绩为1分和1分,而八(1)班的成绩为1分和85分.本题考查了运用平均数,中位数与众数解决实际问题的能力.平均数是指在一组数据中所有数据之和再除以数据的个数.一、填空题(本大题共5个小题,每小题4分,共20分)19、【解析】
直接利用概率公式求解.【详解】从袋中任意摸出一个球,则摸出的球是红球的概率=.故答案为.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.20、甲【解析】
根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:因为甲的方差最小,所以射击成绩较稳定的是甲;
故答案为:甲本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.21、40°【解析】
根据等腰三角形的性质,平行四边形的性质以及三角形内角和定理即可解决问题.【详解】∵四边形是平行四边形,∴∠A=∠C=70°,∵DC=DB,∴∠C=∠DBC=70°,∴∠CDB=180°-70°-70°=40°.故答案是:40°.考查平行四边形的性质、等腰三角形的性质、三角形内角和定理等知识,解题的关键是熟练掌握基本知识.22、AB=BC(答案不唯一).【解析】
根据正方形的判定添加条件即可.【详解】解:添加的条件可以是AB=BC.理由如下:
∵四边形ABCD是矩形,AB=BC,
∴四边形ABCD是正方形.
故答案为AB=BC(答案不唯一).本题考查了矩形的性质,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.此题是一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国植物蛋白饮料行业市场运行动态及投资发展潜力分析报告
- 高中物理题型解题技巧之电磁学篇11 等效阻抗秒解变压器动态问题(原卷版)
- 2.2 长度与时间的测量(课件)2022-2023学年八年级物理上学期同步
- 二零二五年度装配式建筑造价工程师聘用协议4篇
- Module4 Unit2 The apples are falling down the stairs.教学课件-六年级英语下册课堂外研版三起
- 《甜津津的河水》课件
- 《高位胆管癌的护理》课件
- 《运动品牌标志》课件
- 02.冠词【知识精研】小学英语语法专项系列 (人教PEP版)
- 2025至2031年中国圆底计量罐行业投资前景及策略咨询研究报告
- 小学数学学习经验交流课件
- 信永中和在线测评85题
- 2024年第二批政府专职消防员招录报名表
- DB41-T 2704-2024 森林抚育技术规程
- 2020-2021学年浙江省金华市东阳市七年级(下)期末数学试卷(附答案详解)
- 苏教版小学语文上册教学研究论文
- 片状锌粉行业分析!中国片状锌粉行业市场发展前景研究报告(2024版)
- 2024至2030年中国中水回用行业发展监测及投资战略规划报告
- NB/T 11430-2023煤矿TBM掘进施工工艺要求
- 部编版六年级下册道德与法治全册教案
- 全国职业院校技能大赛培训课件
评论
0/150
提交评论