版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题04二次函数一、选择题1.(2019四川自贡)一次函数y=ax+b与反比列函数y=的图象如图所示,则二次函数y=ax2+bx+c的大致图象是()A. B. C. D.2.(2019四川遂宁)二次函数y=x2﹣ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4 B.当b=﹣4时,顶点的坐标为(2,﹣8) C.当x=﹣1时,b>﹣5 D.当x>3时,y随x的增大而增大3.(2019四川达州)如图,边长都为4的正方形ABCD和正三角形EFG如图放置,AB与EF在一条直线上,点A与点F重合.现将△EFG沿AB方向以每秒1个单位的速度匀速运动,当点F与B重合时停止.在这个运动过程中,正方形ABCD和△EFG重叠部分的面积S与运动时间t的函数图象大致是()A. B. C. D.4.(2019四川攀枝花)在同一坐标系中,二次函数与一次函数的图像可能是()5.(2019四川成都)如图,二次函数y=ax2+bx+c的图象经过点A(1,0),B(5,0),下列说法正确的是()A.c<0 B.b2﹣4ac<0 C.a﹣b+c<0 D.图象的对称轴是直线x=36.(2019四川绵阳)如图,二次函数y=ax2+bx+c(a>0)的图象与x轴交于两点(x1,0),(2,0),其中0<x1<1.下列四个结论:①abc<0;②2ac>0;③a+2b+4c>0;④,正确的个数是()A.1B.2C.3D.47.(2019四川乐山)如图,抛物线与轴交于、两点,是以点(0,3)为圆心,2为半径的圆上的动点,是线段的中点,连结.则线段的最大值是()A. B.C.D.8.(2019四川南充)抛物线y=ax2+bx+c(a,b,c是常数),a>0,顶点坐标为(,m),给出下列结论:①若点(n,y1)与(﹣2n,y2)在该抛物线上,当n<时,则y1<y2;②关于x的一元二次方程ax2﹣bx+c﹣m+1=0无实数解,那么()A.①正确,②正确 B.①正确,②错误 C.①错误,②正确 D.①错误,②错误9.(2019四川凉山州)二次函数y=ax2+bx+c的部分图象如图所示,有以下结论:①3a﹣b=0;②b2﹣4ac>0;③5a﹣2b+c>0;④4b+3c>0,其中错误结论的个数是()A.1 B.2 C.3 D.410.(2019四川宜宾)已知抛物线y=x2﹣1与y轴交于点A,与直线y=kx(k为任意实数)相交于B,C两点,则下列结论不正确的是()A.存在实数k,使得△ABC为等腰三角形 B.存在实数k,使得△ABC的内角中有两角分别为30°和60° C.任意实数k,使得△ABC都为直角三角形 D.存在实数k,使得△ABC为等边三角形11.(2019四川广安)二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=1,下列结论:①abc<0;②b<c;③3a+c=0;④当y>0时,﹣1<x<3.其中正确的结论有()A.1个 B.2个 C.3个 D.4个12.(2019四川资阳)如图是函数y=x2﹣2x﹣3(0≤x≤4)的图象,直线l∥x轴且过点(0,m),将该函数在直线l上方的图象沿直线l向下翻折,在直线l下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m的取值范围是()A.m≥1 B.m≤0 C.0≤m≤1 D.m≥1或m≤013.(2019四川巴中)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论①b2>4ac,②abc<0,③2a+b﹣c>0,④a+b+c<0.其中正确的是()A.①④ B.②④ C.②③ D.①②③④二、填空题14.(2019四川宜宾)将抛物线y=2x2的图象,向左平移1个单位,再向下平移2个单位,所得图象的解析式为.15.(2019四川凉山州)将抛物线y=(x﹣3)2﹣2向左平移个单位后经过点A(2,2).16.(2019四川广安)在广安市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为y=﹣,由此可知该生此次实心球训练的成绩为米.17.(2019四川凉山州)当0≤x≤3时,直线y=a与抛物线y=(x﹣1)2﹣3有交点,则a的取值范围是.18.(2019四川遂宁)如图,在平面直角坐标系中,矩形OABC的顶点O落在坐标原点,点A、点C分别位于x轴,y轴的正半轴,G为线段OA上一点,将△OCG沿CG翻折,O点恰好落在对角线AC上的点P处,反比例函数y=经过点B.二次函数y=ax2+bx+c(a≠0)的图象经过C(0,3)、G、A三点,则该二次函数的解析式为.(填一般式)19.(2019四川达州)如图,抛物线y=﹣x2+2x+m+1(m为常数)交y轴于点A,与x轴的一个交点在2和3之间,顶点为B.①抛物线y=﹣x2+2x+m+1与直线y=m+2有且只有一个交点;②若点M(﹣2,y1)、点N(,y2)、点P(2,y3)在该函数图象上,则y1<y2<y3;③将该抛物线向左平移2个单位,再向下平移2个单位,所得抛物线解析式为y=﹣(x+1)2+m;④点A关于直线x=1的对称点为C,点D、E分别在x轴和y轴上,当m=1时,四边形BCDE周长的最小值为.其中正确判断的序号是.三、解答题20.(2019四川凉山州)已知二次函数y=x2+x+a的图象与x轴交于A(x1,0)、B(x2,0)两点,且,求a的值.21.(2019四川南充)在“我为祖国点赞“征文活动中,学校计划对获得一,二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加1支,单价降低0.1元;超过50支,均按购买50支的单价售,笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等奖学生多少人时,购买奖品总金额最少,最少为多少元?22.(2019四川成都)随着5G技术的发展,人们对各类5G产品的使用充满期待,某公司计划在某地区销售一款5G产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第x(x为正整数)个销售周期每台的销售价格为y元,y与x之间满足如图所示的一次函数关系.(1)求y与x之间的关系式;(2)设该产品在第x个销售周期的销售数量为p(万台),p与x的关系可以用p=x+来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?23.(2019四川绵阳)辰星旅游度假村有甲种风格客房15间,乙种风格客房20间.按现有定价:若全部入住,一天营业额为8500元;若甲、乙两种风格客房均有10间入住,一天营业额为5000元.
(1)求甲、乙两种客房每间现有定价分别是多少元?
(2)度假村以乙种风格客房为例,市场情况调研发现:若每个房间每天按现有定价,房间会全部住满;当每个房间每天的定价每增加20元时,就会有两个房间空闲.如果游客居住房间,度假村需对每个房间每天支出80元的各种费用.当每间房间定价为多少元时,乙种风格客房每天的利润m最大,最大利润是多少元?
24.(2019四川攀枝花)已知抛物线的对称轴为直线,其图像与轴相交于、两点,与轴交于点.(1)求,的值;(2)直线与轴交于点,①如图1,若∥轴,且与线段及抛物线分别相交于点、,点关于直线的对称点为,求四边形面积的最大值;HH图1图2②如图2,若直线与线段相交于点,当∽时,求直线的表达式.25.(2019四川眉山)如图1,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A(﹣5,0)和点B(1,0).(1)求抛物线的解析式及顶点D的坐标;(2)点P是抛物线上A、D之间的一点,过点P作PE⊥x轴于点E,PG⊥y轴,交抛物线于点G,过点G作GF⊥x轴于点F,当矩形PEFG的周长最大时,求点P的横坐标;(3)如图2,连接AD、BD,点M在线段AB上(不与A、B重合),作∠DMN=∠DBA,MN交线段AD于点N,是否存在这样点M,使得△DMN为等腰三角形?若存在,求出AN的长;若不存在,请说明理由.26.(2019四川凉山州)如图,抛物线y=ax2+bx+c的图象过点A(﹣1,0)、B(3,0)、C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在一点P,使得△PAC的周长最小,若存在,请求出点P的坐标及△PAC的周长;若不存在,请说明理由;(3)在(2)的条件下,在x轴上方的抛物线上是否存在点M(不与C点重合),使得S△PAM=S△PAC?若存在,请求出点M的坐标;若不存在,请说明理由.27.(2019四川巴中)如图,抛物线y=ax2+bx﹣5(a≠0)经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为y=x+n.①求抛物线的解析式.②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.③过点A作AM⊥BC于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.28.(2019四川广安)如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B的左侧),与y轴交于点N,过A点的直线l:y=kx+n与y轴交于点C,与抛物线y=﹣x2+bx+c的另一个交点为D,已知A(﹣1,0),D(5,﹣6),P点为抛物线y=﹣x2+bx+c上一动点(不与A、D重合).(1)求抛物线和直线l的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的点,探究是否存在点M,使得以点N、C,M、P为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.29.(2019四川达州)如图1,已知抛物线y=﹣x2+bx+c过点A(1,0),B(﹣3,0).(1)求抛物线的解析式及其顶点C的坐标;(2)设点D是x轴上一点,当tan(∠CAO+∠CDO)=4时,求点D的坐标;(3)如图2.抛物线与y轴交于点E,点P是该抛物线上位于第二象限的点,线段PA交BE于点M,交y轴于点N,△BMP和△EMN的面积分别为m、n,求m﹣n的最大值.30.(2019四川资阳)如图,抛物线y=﹣x2+bx+c过点A(3,2),且与直线y=﹣x+交于B、C两点,点B的坐标为(4,m).(1)求抛物线的解析式;(2)点D为抛物线上位于直线BC上方的一点,过点D作DE⊥x轴交直线BC于点E,点P为对称轴上一动点,当线段DE的长度最大时,求PD+PA的最小值;(3)设点M为抛物线的顶点,在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.31.(2019四川成都)如图,抛物线y=ax2+bx+c经过点A(﹣2,5),与x轴相交于B(﹣1,0),C(3,0)两点.(1)求抛物线的函数表达式;(2)点D在抛物线的对称轴上,且位于x轴的上方,将△BCD沿直线BD翻折得到△BC'D,若点C'恰好落在抛物线的对称轴上,求点C'和点D的坐标;(3)设P是抛物线上位于对称轴右侧的一点,点Q在抛物线的对称轴上,当△CPQ为等边三角形时,求直线BP的函数表达式.32.(2019四川乐山)如图1,已知抛物线与轴相交于、两点,与轴交于点,且tan.设抛物线的顶点为,对称轴交轴于点.(1)求抛物线的解析式;(2)为抛物线的对称轴上一点,为轴上一点,且.①当点在线段(含端点)上运动时,求的变化范围;②当取最大值时,求点到线段的距离;③当取最大值时,将线段向上平移个单位长度,使得线段与抛物线有两个交点,求的取值范围.图1备用图图1备用图33.(2019四川遂宁)如图,顶点为P(3,3)的二次函数图象与x轴交于点A(6,0),点B在该图象上,OB交其对称轴l于点M,点M、N关于点P对称,连接BN、ON.(1)求该二次函数的关系式.(2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:①连接OP,当OP=MN时,请判断△NOB的形状,并求出此时点B的坐标.②求证:∠BNM=∠ONM.34.(2019四川南充)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(﹣3,0),且OB=OC.(1)求抛物线的解析式;(2)点P在抛物线上,且∠POB=∠ACB,求点P的坐标;(3)抛物线上两点M,N,点M的横坐标为m,点N的横坐标为m+4.点D是抛物线上M,N之间的动点,过点D作y轴的平行线交MN于点E.①求DE的最大值;②点D关于点E的对称点为F,当m为何值时,四边形MDNF为矩形.35.(2019四川宜宾)如图,在平面直角坐标系xOy中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3)、B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年粤教沪科版九年级科学上册阶段测试试卷含答案
- 2024年统编版2024七年级历史上册月考试卷含答案
- 商业环境下的学生实践项目案例分享
- 图书馆信息资源的科学管理与高效利用
- 2025中国石油春季校园招聘高频重点提升(共500题)附带答案详解
- 2025中国电子科技集团公司第三研究所校园招聘43人高频重点提升(共500题)附带答案详解
- 2025中国烟草总公司山西省公司高校毕业生招聘173人高频重点提升(共500题)附带答案详解
- 2025下半年四川遂宁蓬溪县卫健事业单位招聘39人历年高频重点提升(共500题)附带答案详解
- 2025下半年四川省广元部分市直属事业单位招聘53人历年高频重点提升(共500题)附带答案详解
- 2025上半年重庆市属事业单位集中招聘工作人员939人历年高频重点提升(共500题)附带答案详解
- 【建设方案】虚拟电厂及管控管理平台建设总体方案
- JTS+181-5-2012疏浚与吹填工程设计规范
- AED使用指南课件
- 工程光学-物理光学智慧树知到期末考试答案章节答案2024年北京航空航天大学
- 注销税务授权委托书范本
- 小数数学1000以内数字乘法计算练习题500道(五)
- 《声声慢(寻寻觅觅)》课件 统编版高中语文必修上册
- 初中物理-:八年级上学期竞赛题
- 风电项目工程施工合同
- 2024年1月广东省高中学业水平考试物理试题(附答案)
- 安全教育年度计划养老院
评论
0/150
提交评论