深圳市平湖中学2025届数学高二上期末调研模拟试题含解析_第1页
深圳市平湖中学2025届数学高二上期末调研模拟试题含解析_第2页
深圳市平湖中学2025届数学高二上期末调研模拟试题含解析_第3页
深圳市平湖中学2025届数学高二上期末调研模拟试题含解析_第4页
深圳市平湖中学2025届数学高二上期末调研模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

深圳市平湖中学2025届数学高二上期末调研模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数y=的最大值为Ae-1 B.eC.e2 D.2.甲、乙两名同学同时从教室出发去体育馆打球(路程相等),甲一半时间步行,一半时间跑步;乙一半路程步行,一半路程跑步.如果两人步行速度、跑步速度均相等,则()A.甲先到体育馆 B.乙先到体育馆C.两人同时到体育馆 D.不确定谁先到体育馆3.已知数列的通项公式为,其前项和为,则满足的的最小值为()A.30 B.31C.32 D.334.已知椭圆的长轴长是短轴长的倍,左焦点、右顶点和下顶点分别为,坐标原点到直线的距离为,则的面积为()A. B.4C. D.5.某社区医院为了了解社区老人与儿童每月患感冒的人数y(人)与月平均气温x(℃)之间的关系,随机统计了某4个月的患病(感冒)人数与当月平均气温,其数据如下表:月平均气温x(℃)171382月患病y(人)24334055由表中数据算出线性回归方程中的,气象部门预测下个月的平均气温约为9℃,据此估计该社区下个月老年人与儿童患病人数约为()A.38 B.40C.46 D.586.已知一个几何体的三视图如图,则其外接球的体积为()A. B.C. D.7.如图,正四棱柱ABCD—A1B1C1D1中,AA1=2AB,则异面直线A1B与AD1所成角的余弦值为A. B.C. D.8.已知曲线,下列命题错误的是()A.若,则是椭圆,其焦点在轴上B.若,则是圆,其半径为C.若,则是双曲线,其渐近线方程为D.若,,为上任意一点,,为曲线的两个焦点,则9.若存在两个不相等的正实数x,y,使得成立,则实数m的取值范围是()A. B.C. D.10.已知曲线的方程为,则下列说法正确的是()①曲线关于坐标原点对称;②曲线是一个椭圆;③曲线围成区域的面积小于椭圆围成区域的面积.A.① B.①②C.③ D.①③11.如图所示,直三棱柱中,,,分别是,的中点,,则与所成角的余弦值为()A. B.C. D.12.甲烷是一种有机化合物,分子式为,其在自然界中分布很广,是天然气、沼气的主要成分.如图所示的为甲烷的分子结构模型,已知任意两个氢原子之间的距离(H-H键长)相等,碳原子到四个氢原子的距离(C-H键长)均相等,任意两个H-C-H键之间的夹角为(键角)均相等,且它的余弦值为,即,若,则以这四个氢原子为顶点的四面体的体积为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设等差数列的前项和为,若,,则______14.如图,在棱长为2的正方体中,点分别是棱的中点,是侧面正方形内一点(含边界),若平面,则线段长度的取值范围是__________15.不等式的解集是___________.16.已知函数,,则曲线在处的切线方程为___________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列的首项为,且满足.(1)求证:数列为等比数列;(2)设,记数列的前项和为,求,并证明:.18.(12分)求适合下列条件的曲线的标准方程:(1),焦点在轴上的双曲线的标准方程;(2)焦点在轴上,且焦点到准线的距离是2的抛物线的标准方程19.(12分)已知椭圆的左、右焦点分别为,,离心率为,过的直线与椭圆交于,两点,若的周长为8.(1)求椭圆的标准方程;(2)设为椭圆上的动点,过原点作直线与椭圆分别交于点、(点不在直线上),求面积的最大值.20.(12分)已知的内角A,B,C的对边分别为a,b,c.(1)若,,,求边长c;(2),,,求角C.21.(12分)设数列的前项和为,已知,且.(1)证明:数列为等比数列;(2)若,是否存在正整数,使得对任意恒成立?若存在、求的值;若不存在,说明理由.22.(10分)已知函数(a是常数).(1)当时,求的单调区间与极值;(2)若,求a的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】,所以函数在上递增,在上递减,所以函数的最大值为时,y==故选A点睛:研究函数最值主要根据导数研究函数的单调性,找到最值,分式求导公式要记熟2、A【解析】设出总路程与步行速度、跑步速度,表示出两人所花时间后比较不等式大小【详解】设总路程为,步行速度,跑步速度对于甲:,得对于乙:,当且仅当时等号成立,而,故,乙花时间多,甲先到体育馆故选:A3、C【解析】由条件可得得出,再由解出的范围,得出答案.【详解】由,则由,即,即,所以所以满足的的最小值为为32故选:C4、C【解析】设,根据题意,可知的方程为直线,根据原点到直线的距离建立方程,求出,进而求出,的值,以及到直线的距离,再根据面积公式,即可求出结果.【详解】设,由题意可知,其中,所以的方程为,即所以原点到直线的距离为,所以,即,;所以直线的方程为,所以到直线的距离为;又,所以的面积为.故选:C.5、B【解析】由表格数据求样本中心,根据线性回归方程过样本中心点,将点代入方程求参数,写出回归方程,进而估计下个月老年人与儿童患病人数.【详解】由表格得为,由回归方程中的,∴,解得,即,当时,.故选:B.6、D【解析】根据三视图还原几何体,将几何体补成长方体,计算出几何体的外接球直径,结合球体体积公式即可得解.【详解】根据三视图还原原几何体,如下图所示:由图可知,该几何体三棱锥,且平面,将三棱锥补成长方体,所以,三棱锥的外接球直径为,故,因此,该几何体的外接球的体积为.故选:D【点睛】方法点睛:空间几何体与球接、切问题的求解方法(1)求解球与棱柱、棱锥接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解(2)若球面上四点P,A,B,C构成的三条线段两两互相垂直,一般把有关元素“补形”成为一个球内接长方体,利用求解7、D【解析】设AA1=2AB=2,因为,所以异面直线A1B与AD1所成角,,故选D.8、D【解析】根据椭圆和双曲线的性质以及定义逐一判断即可.【详解】曲线,若,则是椭圆,其焦点在轴上,故A正确;若,则,即是圆,半径为,故B正确;若,则是双曲线,当,则渐近线方程为,当,则渐近线方程为,故C正确;若,,则是双曲线,其焦点在轴上,由双曲线的定义可知,,故D错误;故选:D9、D【解析】将给定等式变形并构造函数,由函数的图象与垂直于y轴的直线有两个公共点推理作答.【详解】因,令,则存在两个不相等的正实数x,y,使得,即存在垂直于y轴的直线与函数的图象有两个公共点,,,而,当时,,函数在上单调递增,则垂直于y轴的直线与函数的图象最多只有1个公共点,不符合要求,当时,由得,当时,,当时,,即函数在上单调递减,在上单调递增,,令,,令,则,即在上单调递增,,即,在上单调递增,则有当时,,,而函数在上单调递增,取,则,而,因此,存在垂直于y轴的直线(),与函数的图象有两个公共点,所以实数m的取值范围是.故选:D【点睛】思路点睛:涉及双变量的等式或不等式问题,把双变量的等式或不等式转化为一元变量问题求解,途径都是构造一元函数.10、D【解析】对于①在方程中换为,换为可判断;对于②分析曲线的图形是两个抛物线的部分组成的可判断;对于③在第一象限内,分析椭圆的图形与曲线图形的位置关系可判断.【详解】在曲线的方程中,换为,换为,方程不变,故曲线关于坐标原点对称所以①正确,当时,曲线的方程化为,此时当时,曲线的方程化为,此时所以曲线图形是两个抛物线的部分组成的,不是椭圆,故②不正确.当,时,设,设,则,(当且仅当或时等号成立)所以在第一象限内,椭圆的图形在曲线的上方.根据曲线和椭圆的的对称性可得椭圆的图形在曲线的外部(四个顶点在曲线上)所以曲线围成区域的面积小于椭圆围成区域的面积,故③正确.故选:D11、A【解析】取的中点为,的中点为,然后可得或其补角即为与所成角,然后在中求出答案即可.【详解】取的中点为,的中点为,,,所以或其补角即为与所成角,设,则,,在,,故选:A12、A【解析】利用余弦定理求得,计算出正四面体的高,从而计算出正四面体的体积.【详解】设,则由余弦定理知:,解得,故该正四面体的棱长均为由正弦定理可知:该正四面体底面外接圆的半径,高故该正四面体的体积为故选:A二、填空题:本题共4小题,每小题5分,共20分。13、77【解析】依题意利用等差中项求得,进而求得.【详解】依题意可得,则,故故答案为:77.14、【解析】取的中点G,连接FG,BG,FB,由正方体的几何特征,易证平面AEC//平面BFG,再根据是侧面内一点(含边界),且平面,得到点P在线段BG上运动,然后在等腰中求解.【详解】如图所示:取的中点G,连接FG,BG,FB,在正方体中,易得又因为平面BFG,平面BFG,所以平面BFG,同理证得平面BFG,又因为,所以平面AEC//平面BFG,因为是侧面内一点(含边界),且平面,所以点P线段BG上运动,如图所示:在等腰中,作,且,所以,设点F到线段BG的距离为d,由等面积法得,解得,所以线段长度的取值范围是,故答案为:15、##【解析】将分式不等式等价转化为不等式组,求解即得.【详解】原不等式等价于,解得,故答案为:.16、【解析】根据导数的几何意义求得在点处的切线方程.【详解】由,求导,知,又,则函数在点处的切线方程为.故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2),证明见解析【解析】(1)根据等比数列的定义证明;(2)由错位相减法求得和,再由的单调性可证得不等式成立【小问1详解】由得又,数列是以为首项,以为公比的等比数列.【小问2详解】由(1)的结论有①②①②得:又为递增数列,18、(1);(2)或【解析】(1)设方程为(,),即得解;(2)由题得,即得解.【详解】(1)解:由题意,设方程为(,),,,,,所以双曲线的标准方程是(2)焦点到准线的距离是2,,∴当焦点在轴上时,抛物线的标准方程为或19、(1);(2).【解析】(1)根据周长可求,再根据离心率可求,求出后可求椭圆的方程.(2)当直线轴时,计算可得的面积的最大值为,直线不垂直轴时,可设,联立直线方程和椭圆方程可求,设与平行且与椭圆相切的直线为:,结合椭圆方程可求的关系,从而求出该直线到直线的距离,从而可求的面积的最大值为.【详解】(1)由椭圆的定义可知,的周长为,∴,,又离心率为,∴,,所以椭圆方程为.(2)当直线轴时,;当直线不垂直轴时,设,,,∴.设与平行且与椭圆相切的直线为:,,∵,∴,∴距的最大距离为,∴,综上,面积的最大值为.【点睛】方法点睛:求椭圆的标准方程,关键是基本量的确定,而面积的最值的计算,则可以转化为与已知直线平行且与椭圆相切的直线与已知直线的距离来计算,此类转化为面积最值计算过程的常规转化.20、(1)(2)或【解析】(1)根据余弦定理可求得答案;(2)根据正弦定理和三角形的内角和可求得答案.【小问1详解】解:由余弦定理得:,所以.【小问2详解】解:由正弦定理得:得,所以或120°,又因为,所以,所以或即或.21、(1)证明见解析(2)【解析】(1)由已知条件有,根据等比数列的定义即可证明;(2)由(1)求出及,进而可得,利用二次函数的性质即可求解的最小值,从而可得答案.【小问1详解】证明:因为,所以,又因为,所以,所以数列是首项为2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论