版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省宾川县2025届高二数学第一学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知不等式的解集为,关于x的不等式的解集为B,且,则实数a的取值范围为()A. B.C. D.2.圆与圆的位置关系是()A.内切 B.相交C.外切 D.相离3.抛物线的焦点为F,准线为l,点P是准线l上的动点,若点A在抛物线C上,且,则(O为坐标原点)的最小值为()A. B.C. D.4.两条平行直线与之间的距离为()A. B.C. D.5.设函数在上单调递减,则实数的取值范围是()A. B.C. D.6.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.7.在中,三个内角A,B,C的对边分别为a,b,c,若,,,则的面积为()A. B.1C. D.28.定义在区间上的函数的导函数的图象如图所示,则下列结论不正确的是()A.函数在区间上单调递增 B.函数在区间上单调递减C.函数在处取得极大值 D.函数在处取得极小值9.传说古希腊毕达哥拉斯学派的数学家用沙粒和小石子研究数,他们根据沙粒和石子所排列的形状把数分成许多类,若:三角形数、、、、,正方形数、、、、等等.如图所示为正五边形数,将五边形数按从小到大的顺序排列成数列,则此数列的第4项为()A. B.C. D.10.过双曲线(,)的左焦点作圆:的两条切线,切点分别为,,双曲线的左顶点为,若,则双曲线的渐近线方程为()A. B.C. D.11.已知长方体的底面ABCD是边长为4的正方形,长方体的高为,则与对角面夹角的正弦值等于()A. B.C. D.12.下列说法正确的是()A.空间中的任意三点可以确定一个平面B.四边相等的四边形一定是菱形C.两条相交直线可以确定一个平面D.正四棱柱的侧面都是正方形二、填空题:本题共4小题,每小题5分,共20分。13.若圆的一条直径的端点是、,则此圆的方程是_______14.圆锥曲线有良好的光学性质,光线从椭圆的一个焦点发出,被椭圆反射后会经过椭圆的另一个焦点(如左图);光线从双曲线的一个焦点发出,被双曲线反射后的反射光线等效于从另一个焦点射出(如中图).封闭曲线E(如右图)是由椭圆C1:+=1和双曲线C2:-=1在y轴右侧的一部分(实线)围成.光线从椭圆C1上一点P0出发,经过点F2,然后在曲线E内多次反射,反射点依次为P1,P2,P3,P4,…,若P0,P4重合,则光线从P0到P4所经过的路程为_________.15.过抛物线的焦点的直线交抛物线于点、,且点的横坐标为,过点和抛物线顶点的直线交抛物线的准线于点,则的面积为___________.16.若展开式的二项式系数之和是64,则展开式中的常数项的值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xOy中,椭圆C:的左,右顶点分别为A、B,点F是椭圆的右焦点,,(1)求椭圆C的方程;(2)不过点A的直线l交椭圆C于M、N两点,记直线l、AM、AN的斜率分别为k、、.若,证明直线l过定点,并求出定点的坐标18.(12分)已知椭圆的左右焦点分别为,,经过左焦点的直线与椭圆交于A,B两点(异于左右顶点)(1)求△的周长;(2)求椭圆E上的点到直线距离的最大值19.(12分)已知圆C:(1)若过点的直线l与圆C相交所得的弦长为,求直线l的方程;(2)若P是直线:上的动点,PA,PB是圆C的两条切线,A,B是切点,求四边形PACB面积的最小值20.(12分)过原点O的圆C,与x轴相交于点A(4,0),与y轴相交于点B(0,2)(1)求圆C的标准方程;(2)直线l过B点与圆C相切,求直线l的方程,并化为一般式21.(12分)已知椭圆的左、右焦点分别为,,离心率为,过左焦点的直线l与椭圆C交于A,B两点,的周长为8(1)求椭圆C的标准方程;(2)如图,,是椭圆C的短轴端点,P是椭圆C上异于点,的动点,点Q满足,,求证与的面积之比为定值22.(10分)某企业新研发了一种产品,产品的成本由原料成本及非原料成本组成.每件产品的非原料成本(元)与生产该产品的数量(千件)有关,经统计得到如下数据:x12345678y56.53122.7517.815.9514.51312.5根据以上数据绘制了散点图观察散点图,两个变量间关系考虑用反比例函数模型和指数函数模型分别对两个变量的关系进行拟合.已求得用指数函数模型拟合的回归方程为,与x的相关系数.(1)用反比例函数模型求y关于x的回归方程;(2)用相关系数判断上述两个模型哪一个拟合效果更好(精确到0.001),并用其估计产量为10千件时每件产品非原料成本;(3)根据企业长期研究表明,非原料成本y服从正态分布,用样本平均数作为的估计值,用样本标准差s作为的估计值,若非原料成本y在之外,说明该成本异常,并称落在之外的成本为异样成本,此时需寻找出现异样成本的原因.利用估计值判断上述非原料成本数据是否需要寻找出现异样成本的原因?参考数据(其中):0.340.1151.531845777.55593.0630.70513.9参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为:,,相关系数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】解出不等式可得集合,由可得,然后可得在上恒成立,然后分离参数求解即可.【详解】由得,,解得,因为,所以所以可得在上恒成立,即在上恒成立,故只需,,当时,,故故选:B2、B【解析】判断圆心距与两圆半径之和、之差关系即可判断两圆位置关系.【详解】由得圆心坐标为,半径,由得圆心坐标为,半径,∴,,∴,即两圆相交.故选:B.3、D【解析】依题意得点坐标,作点关于的对称点,则,求即为最小值【详解】如图所示:作点关于的对称点,连接,设点,不妨设,由题意知,直线l方程为,则,得所以,得,所以由,当三点共线时取等号,又所以最小值为故选:D4、D【解析】由已知有,所以直线可化为,利用两平行直线距离公式有,选D.点睛:本题主要考查两平行直线间的距离公式,属于易错题.在用两平行直线距离公式时,两直线中的系数要相同,不然不能用此公式计算5、B【解析】分析可知,对任意的恒成立,由参变量分离法可得出,求出在时的取值范围,即可得出实数的取值范围.【详解】因为,则,由题意可知对任意的恒成立,则对任意的恒成立,当时,,.故选:B.6、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B7、C【解析】由余弦定理求出,利用正弦定理将边化角,再根据二倍角公式得到,即可得到,最后利用面积公式计算可得;【详解】解:因为,又,所以,因为,所以,所以,因为,所以,即,所以或,即或(舍去),所以,因为,所以,所以;故选:C8、C【解析】根据函数的单调性和函数的导数的值的正负的关系,可判断A,B的结论;根据函数的极值点和函数的导数的关系可判断、的结论【详解】函数在上,故函数在上单调递增,故正确;根据函数的导数图象,函数在时,,故函数在区间上单调递减,故正确;由A的分析可知函数在上单调递增,故不是函数的极值点,故错误;根据函数的单调性,在区间上单调递减,在上单调递增,故函数处取得极小值,故正确,故选:9、D【解析】根据前三个五边形数可推断出第四个五边形数.【详解】第一个五边形数为,第二个五边形数为,第三个五边形数为,故第四个五边形数为.故选:D.10、C【解析】根据,,可以得到,从而得到与的关系式,再由,,的关系,进而可求双曲线的渐近线方程【详解】解:由,,则是圆的切线,,,,所以,因为双曲线的渐近线方程为,即为故选:C11、C【解析】建立空间直角坐标系,结合空间向量的夹角坐标公式即可求出线面角的正弦值.【详解】连接,建立如图所示的空间直角坐标系∵底面是边长为4的正方形,,∴,,,因为,,且,所以平面,∴,平面的法向量,∴与对角面所成角的正弦值为故选:C.12、C【解析】根据立体几何相关知识对各选项进行判断即可.【详解】对于A,根据公理2及推论可知,不共线的三点确定一个平面,故A错误;对于B,在一个平面内,四边相等的四边形才一定是菱形,故B错误;对于C,根据公理2及推论可知,两条相交直线可以确定一个平面,故C正确;对于D,正四棱柱指上、下底面都是正方形且侧棱垂直于底面的棱柱,侧面可以是矩形,故D错误.故选:C二、填空题:本题共4小题,每小题5分,共20分。13、【解析】先设圆上任意一点的坐标,然后利用直径对应的圆周角为直角,再利用向量垂直建立方程即可【详解】设圆上任意一点的坐标为可得:,则有:,即解得:故答案为:14、【解析】结合椭圆、双曲线的定义以及它们的光学性质求得正确答案.【详解】椭圆;双曲线,双曲线和椭圆的焦点重合.根据双曲线的定义有,所以①,②,根据椭圆的定义由,所以路程.故答案为:15、##【解析】不妨设点为第一象限内的点,求出点的坐标,可求得直线、的方程,求出点、的坐标,可求得以及点到直线的距离,利用三角形的面积公式可求得的面积.【详解】不妨设点为第一象限内的点,设点,其中,则,可得,即点,抛物线的焦点为,,所以,直线的方程为,联立,解得或,即点,所以,,直线的方程为,抛物线的准线方程为,联立,可得点,点到直线的距离为,因此,.故答案为:.16、【解析】首先利用展开式的二项式系数和是求出,然后即可求出二项式的常数项.【详解】由题知展开式的二项式系数之和是,故有,可得,知当时有.故展开式中的常数项为.故答案为:.【点睛】本题考查了利用二项式的系数和求参数,求二项式的常数项,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析,(-5,0).【解析】(1)写出A、B、F的坐标,求出向量坐标,根据向量的关系即可列出方程组,求得a、b、c和椭圆的标准方程;(2)设直线l的方程为y=kx+m,,.联立直线l与椭圆方程,根据韦达定理得到根与系数的关系,求出,根据即可求得k和m的关系,即可证明直线过定点并求出该定点.【小问1详解】由题意,知A(-a,0),B(a,0),F(c,0)∵,∴解得从而b2=a2-c2=3∴椭圆C的方程;【小问2详解】设直线l的方程为y=kx+m,,∵直线l不过点A,因此-2k+m≠0由得时,,,∴由,可得3k=m-2k,即m=5k,故l的方程为y=kx+5k,恒过定点(-5,0).18、(1);(2).【解析】(1)利用椭圆的定义求△的周长;(2)设直线与椭圆相切,联立方程求参数m,与之间的距离的最大值,即为椭圆E上的点到直线l距离的最大值.【小问1详解】已知椭圆E方程为,所以,△的周长为,其中,所以△的周长为.【小问2详解】设直线与直线l平行且与椭圆相切,则,得,即,令,解得,所以,与之间的距离,即椭圆E上的点到直线l距离的最大值为19、(1)或.(2)8【解析】(1)先判断当斜率不存在时,不满足条件;再判断当斜率存在时,设利用垂径定理列方程求出k,即可求出直线方程;(2)过P作圆C的两条切线,切点分别为A、B,连结CA、CB,得到.判断出当时,最小,四边形PACB面积取得最小值.利用点到直线的距离公式求出,,即可求出四边形PACB面积的最小值.【小问1详解】圆C:化为标准方程为:,所以圆心为,半径为r=4.(1)当斜率不存在时,x=1代入圆方程得,弦长为,不满足条件;(2)当斜率存在时,设即.圆心C到直线l的距离,解得:或k=0,所以直线方程为或.【小问2详解】过P作圆C的两条切线,切点分别为A、B,连结CA、CB,则.因为,所以所以.所以当时,最小,四边形PACB面积取得最小值.所以,所以,即四边形PACB面积的最小值为8.20、(1);(2)【解析】(1)设圆的标准方程为:,则分别代入原点和,得到方程组,解出即可得到;(2)由(1)得到圆心为,半径,由于直线过点与圆相切,则分别讨论斜率存在与否,运用直线与圆相切的条件:,解方程即可得到所求直线方程.【详解】(1)设圆C的标准方程为,则分别代入原点和,得到,解得则圆的标准方程为(2)由(1)得到圆心为,半径,由于直线过点与圆相切,当时,到的距离为2,不合题意,舍去;当斜率存在时,设,由直线与圆相切,得到,即有,解得,故直线,即为点睛:本题考查直线与圆位置关系,考查圆的方程的求法和直线与圆相切的条件,考查运算能力,属于中档题;圆的方程有一般形式与标准形式,在该题中利用待定系数法将其设为标准形式,列、解出方程组即可;当直线与圆相切时等价于圆心到直线的距离等于半径,已知直线上一点写出直线的方程需注意斜率不存在的情形.21、(1)(2)证明见解析【解析】(1)根据周长为8,求得a,再根据离心率求解;(2)方法一:设,,得到直线和直线的方程,联立求得Q的横坐标,根据在椭圆上,得到,然后代入Q的横坐标求解;方法二:设直线,的斜率分别为k,,点,,直线的方程为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024安庆竞业限制合同3篇
- 2024年商业机密保护合同
- 二零二四年锰矿洞采矿技术咨询合同3篇
- 2024年度瑜伽教练劳动合同续签与终止合同3篇
- 2024版机械设备购买租赁合同9篇
- 2024版无人机研发合作合同3篇
- 全新2024年度船舶涂料研发与供应合同3篇
- 2024年事业单位员工聘用合同模板3篇
- 2024版技术培训居间协议3篇
- 2024年度专利实施许可合同标的及专利实施计划.3篇
- 卫生巾刀具使用相关基础知识课件
- 警犬行为理论考试题库(含答案)
- 治疗肩周炎课件
- 中国石油大学(华东)PPT模板
- 公安机关办理刑事案件流程
- 园林绿化客土进场检验记录
- 医院物业管理服务的考核方案
- 涂塑钢管焊接后修复工艺及措施
- 生物安全实验室备案课件
- 妇科杂病,阴挺,中医妇科学课件
- 加油站建设标准新版
评论
0/150
提交评论