河北省正定县一中2025届数学高二上期末考试模拟试题含解析_第1页
河北省正定县一中2025届数学高二上期末考试模拟试题含解析_第2页
河北省正定县一中2025届数学高二上期末考试模拟试题含解析_第3页
河北省正定县一中2025届数学高二上期末考试模拟试题含解析_第4页
河北省正定县一中2025届数学高二上期末考试模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省正定县一中2025届数学高二上期末考试模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某救援队有5名队员,其中有1名队长,1名副队长,在一次救援中需随机分成两个行动小组,其中一组2名队员,另一组3名队员,则正、副队长不在同一组的概率为()A. B.C. D.2.“且”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.已知数列中,,(),则等于()A. B.C. D.24.上海世博会期间,某日13时至21时累计入园人数的折线图如图所示,那么在13时~14时,14时~15时,…,20时~21时八个时段中,入园人数最多的时段是()A.13时~14时 B.16时~17时C.18时~19时 D.19时~20时5.年1月初,中国多地出现散发病例甚至局部聚集性疫情,在此背景下,各地陆续发出“春节期间非必要不返乡”的倡议,鼓励企事业单位职工就地过年.某市针对非本市户籍并在本市缴纳社保,且春节期间在本市过年的外来务工人员,每人发放1000元疫情专项补贴.小张是该市的一名务工人员,则“他在该市过年”是“他可领取1000元疫情专项补贴”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.已知向量,且与互相垂直,则k=()A. B.C. D.7.已知圆,若存在过点的直线与圆C相交于不同两点A,B,且,则实数a的取值范围是()A. B.C. D.8.的展开式中的系数是()A.1792 B.C.448 D.9.小明骑车上学,开始时匀速行驶,途中因交通堵塞停留了一段时间,后为了赶时间加快速度行驶.与以上事件吻合得最好的图象是()A. B.C. D.10.已知数列满足,,记数列的前n项和为,若对于任意,不等式恒成立,则实数k的取值范围为()A. B.C. D.11.已知函数有两个不同的零点,则实数的取值范围是()A B.C. D.12.若等轴双曲线C过点,则双曲线C的顶点到其渐近线的距离为()A.1 B.C. D.2二、填空题:本题共4小题,每小题5分,共20分。13.由曲线围成的图形的面积为_______________14.椭圆的左焦点为,M为椭圆上的一点,N是的中点,O为原点,若,则______15.已知抛物线C:y2=8x的焦点为F,直线l过点F与抛物线C交于A,B两点,以F为圆心的圆交线段AB于C,D两点(从上到下依次为A,C,D,B),若,则该圆的半径r的取值范围是____________.16.若,若,则______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,其中为常数,且(1)求证:时,;(2)已知a,b,p,q为正实数,满足,比较与的大小关系.18.(12分)已知等比数列的公比,且,是的等差中项.数列的前n项和为,满足,.(1)求和的通项公式;(2)设,求的前2n项和.19.(12分)已知椭圆C:()过点,且离心率为(1)求椭圆C的方程;(2)过点()的直线l(不与x轴重合)与椭圆C交于A,B两点,点C与点B关于x轴对称,直线AC与x轴交于点Q,试问是否为定值?若是,请求出该定值,若不是,请说明理由20.(12分)已知数列中,,且(1)求证:数列是等差数列,并求出;(2)数列前项和为,求21.(12分)设数列的前项和为,且.(1)求数列的通项公式;(2)记,求数列的前项和为.22.(10分)已知是等差数列,是等比数列,且,,,.(1)求的通项公式;(2)设,求数列的前n项和.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】求出基本事件总数与正、副队长不在同一组的基本事件个数,即可求出答案.【详解】基本事件总数为正、副队长不在同一组的基本事件个数为故正、副队长不在同一组的概率为.故选:C.2、A【解析】按照充分必要条件的判断方法判断,“且”能否推出“”,以及“”能否推出“且”,判断得到正确答案,【详解】当且时,成立,反过来,当时,例:,不能推出且.所以“且”是“”的充分不必要条件.故选:A【点睛】本题考查充分不必要条件的判断,重点考查基本判断方法,属于基础题型.3、D【解析】由已知条件可得,,…,即是周期为3的数列,即可求.【详解】由题设,知:,,,…,∴是周期为3的数列,而的余数为1,∴.故选:D.4、B【解析】要找入园人数最多的,只要根据函数图象找出图象中变化最大的即可【详解】结合函数的图象可知,在13时~14时,14时~15时,…,20时~21时八个时段中,图象变化最快的为16到17点之间故选:B.【点睛】本题考查折线统计图的实际应用,属于基础题.5、B【解析】根据充分条件、必要条件的定义进行判定.【详解】只有非本市户籍并在本市缴纳社保的外来务工人员就地过年,才可领取1000元疫情专项补贴,小张是该市的一名务工人员,但他可能是本市户籍或非本市户籍但在本市未缴纳社保,所以“他在该市过年”是“他可领取1000元疫情专项补贴”的必要不充分条件.故选:B.6、C【解析】利用垂直的坐标表示列方程求解即可.【详解】由与互相垂直得,解得故选:C.7、D【解析】根据圆的割线定理,结合圆的性质进行求解即可.【详解】圆的圆心坐标为:,半径,由圆的割线定理可知:,显然有,或,因为,所以,于是有,因为,所以,而,或,所以,故选:D8、D【解析】根据二项式展开式的通项公式计算出正确答案.【详解】的展开式中,含的项为.所以的系数是.故选:D9、C【解析】先研究四个选项中图象的特征,再对照小明上学路上的运动特征,两者对应即可选出正确选项.【详解】考查四个选项,横坐标表示时间,纵坐标表示的是离开学校的距离,由此知,此函数图象一定是下降的,由此排除A;再由小明骑车上学,开始时匀速行驶可得出图象开始一段是直线下降型,又途中因交通堵塞停留了一段时间,故此时有一段函数图象与x轴平行,由此排除D,之后为了赶时间加快速度行驶,此一段时间段内函数图象下降的比较快,由此可确定C正确,B不正确故选C【点睛】本题考查函数的表示方法,关键是理解坐标系的度量与小明上学的运动特征,属于基础题.10、C【解析】由已知得,根据等比数列的定义得数列是首项为,公比为的等比数列,由此求得,然后利用裂项求和法求得,进而求得的取值范围.【详解】解:依题意,当时,,则,所以数列是首项为,公比为的等比数列,,即,所以,所以,所以的取值范围是.故选:C.11、A【解析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解.【详解】由题意得有两个零点令,则且所以,在上为增函数,可得,当,在上单调递减,可得,即要有两个零点有两个零点,实数的取值范围是.故选:A【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解12、A【解析】先求出双曲线C的标准方程,再求顶点到其渐近线的距离.【详解】设等轴双曲线C的标准方程为,因为点在双曲线上,所以,解得,所以双曲线C的标准方程为,故上顶点到其一条渐近线的距离为.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】当时,曲线表示的图形为以为圆心,以为半径的圆在第一象限的部分,所以面积为,根据对称性,可知由曲线围成的图形的面积为考点:本小题主要考查曲线表示的平面图形的面积的求法,考查学生分类讨论思想的运用和运算求解能力.点评:解决此题的关键是看出所求图形在四个象限内是相同的,然后求出在一个象限内的图形的面积即可解决问题.14、4【解析】根据三角形的中位线定理,结合椭圆的定义即可求得答案.【详解】椭圆的左焦点为,如图,设右焦点为,则,由N是的中点,O为得中点,,故,又,所以,故答案为:415、【解析】设出直线的方程为,代入抛物线方程,消去,可得关于的二次方程,运用韦达定理及抛物线的定义,化简计算可求解.【详解】抛物线C:y2=8x的焦点为,设以为圆心的圆的半径为,可知,,设,直线的方程为,则,代入抛物线方程,可得,即有,,,,即,所以.故答案为:16、2【解析】首先利用二项展开式的通项公式,求,再利用赋值法求系数的和以及【详解】展开式的通项为,令,则,即,故,令,得.又,所以故故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)根据导数判断出函数的单调性求出其最大值,即可证出;(2)由(1)知:,再变形即可得出小问1详解】因为,∴在上单调递减,又因,故当时,;当时,,所以在上单调递增,在上单调递减,所以.【小问2详解】由(1)知:,两边同乘以a得:,∴,即.18、(1),()(2)【解析】(1)等差数列和等比数列的基本量的计算,根据条件列出方程,并解方程即可;(2)数列根据的奇偶分段表示,奇数项通过乘公比错位相减法克求得前项和,偶数项则是通过裂项求和.【小问1详解】由得,.又,,所以,即,解得或(舍去).所以(),当时,,当时,,经检验,时,适合上式,故().综上可得:,【小问2详解】由(1)可知,当n为奇数时,,当n为偶数时,,由题意,有①②①-②得:,则有:..故.19、(1)(2)为定值【解析】(1)由题意可得解方程组求出,从而可得椭圆方程,(2)设直线AB:,,代入椭圆方程,消去,利用根与系数关系,再表示出直线AC的方程,从而可求出点Q的坐标,从而可表示出,然后化简可得结论【小问1详解】由题意得解得故椭圆C的方程为;【小问2详解】设直线AB:,,联立消去y得,设,,得,,因为点C与点B关于x轴对称,所以,所以直线AC的斜率为,直线AC的方程,令,解得可得,所以,因为,所以,所以为定值【点睛】关键点点睛:此题考查椭圆方程的求法,考查直线与椭圆的位置关系,解题的关键是将直线AB的方程代入椭圆方程中化简,利用根与系数关系,结合已知条件表示出直线AC的方程,从而可求出点Q的坐标,考查计算能力,属于中档题20、(1)证明见解析,(2)【解析】(1)利用等差数列的定义可证是等差数列,利用等差数列的通项公式可求.(2)利用错位相减法可求.【小问1详解】因为,是以为首项,为公差的等差数列,,.【小问2详解】,,,.21、(1);(2).【解析】(1)利用可求得结果;(2)由(1)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论