浙江名校新2025届高一上数学期末学业水平测试试题含解析_第1页
浙江名校新2025届高一上数学期末学业水平测试试题含解析_第2页
浙江名校新2025届高一上数学期末学业水平测试试题含解析_第3页
浙江名校新2025届高一上数学期末学业水平测试试题含解析_第4页
浙江名校新2025届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江名校新2025届高一上数学期末学业水平测试试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.“”的一个充分不必要条件是()A. B.C. D.2.已知函数,函数,若有两个零点,则m的取值范围是()A. B.C. D.3.若<α<π,化简的结果是()A. B.C. D.4.已知函数,则下列对该函数性质的描述中不正确的是()A.的图像关于点成中心对称B.的最小正周期为2C.的单调增区间为D.没有对称轴5.集合,则A∩B=()A.[0,2] B.(1,2]C.[1,2] D.(1,+∞)6.已知函数的定义域与值域均为,则()A. B.C. D.17.设函数,对于满足的一切值都有,则实数的取值范围为A B.C. D.8.体育老师记录了班上10名同学1分钟内的跳绳次数,得到如下数据:88,94,96,98,98,99,100,101,101,116.这组数据的60%分位数是()A.98 B.99C.99.5 D.1009.函数f(x)=的定义域为()A.(2,+∞) B.(0,2)C.(-∞,2) D.(0,)10.已知函数在[-2,1]上具有单调性,则实数k的取值范围是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤4二、填空题:本大题共6小题,每小题5分,共30分。11.=___________12.已知函数,使方程有4个不同的解:,则的取值范围是_________;的取值范围是________.13.命题“”的否定是________14.已知一个扇形的面积为,半径为,则它的圆心角为______弧度15.若关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},则关于x的不等式cx2+bx+a>0的解集是______16.函数是幂函数,且当时,是减函数,则实数=_______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,集合,集合.(1)求;(2)若,求实数a的取值范围.18.某网站为调查某项业务的受众年龄,从订购该项业务的人群中随机选出200人,并将这200人的年龄按照,,,,分成5组,得到的频率分布直方图如图所示:(1)求的值和样本的平均数(同一组数据用该区间的中点值作代表);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取2人,求这2人中恰有1人年龄在中的概率19.已知集合,集合,集合.(1)求;(2)若,求实数的值取范围.20.已知函数是上的奇函数(1)求;(2)用定义法讨论在上的单调性;(3)若在上恒成立,求的取值范围21.已知函数.(1)化简;(2)若,求下列表达式的值:①;②.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解析】利用充分条件,必要条件的定义判断即得.【详解】由,可得,所以是的充要条件;所以是既不充分也不必要条件;所以是的必要不充分条件;所以是的充分不必要条件.故选:D.2、A【解析】存在两个零点,等价于与的图像有两个交点,数形结合求解.【详解】存在两个零点,等价于与的图像有两个交点,在同一直角坐标系中绘制两个函数的图像:由图可知,当直线在处的函数值小于等于1,即可保证图像有两个交点,故:,解得:故选:A.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图像,利用数形结合的方法求解.3、A【解析】利用三角函数的平方关系式,根据角的范围化简求解即可【详解】=因为<α<π所以cos<0,结果为,故选A.【点睛】本题考查同角三角函数的基本关系式的应用,三角函数式的化简求值,考查计算能力4、C【解析】根据正切函数的周期性,单调性和对称性分别进行判断即可【详解】对于A:令,令,可得函数的一个对称中心为,故正确;对于B:函数f(x)的最小正周期为T=,故正确;对于C:令,解不等式可得函数的单调递增区间为,故错误;对于D:正切函数不是轴对称图形,故正确故选:C【点睛】本题考查与正切函数有关的性质,涉及周期性,单调性和对称性,利用整体代换的思想进行判断是解决本题的关键5、B【解析】先求出集合A,B,再求两集合的交集即可【详解】解:由,得,所以,由于,所以,所以,所以,故选:B6、A【解析】根据函数的定义域可得,,,再根据函数的值域即可得出答案.【详解】解:∵的解集为,∴方程的解为或4,则,,,∴,又因函数的值域为,∴,∴.故选:A.7、D【解析】用分离参数法转化为求函数的最大值得参数范围【详解】满足的一切值,都有恒成立,,对满足的一切值恒成立,,,时等号成立,所以实数的取值范围为,故选:D.8、C【解析】根据分位数的定义即可求得答案.【详解】这组数据的60%分位数是.9、B【解析】列不等式求解【详解】,解得故选:B10、C【解析】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【详解】函数对称轴为,要使在区间[-2,1]上具有单调性,则或,∴或综上所述的范围是:k≤-8或k≥4.故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】tan240°=tan(180°+60°)=tan60°=,故答案为:12、①.②.【解析】先画出分段函数的图像,依据图像得到之间的关系式以及之间的关系式,分别把和转化成只有一个自变量的代数式,再去求取值范围即可.【详解】做出函数的图像如下:在单调递减:最小值0;在单调递增:最小值0,最大值2;在上是部分余弦型曲线:最小值,最大值2.若方程有4个不同的解:,则不妨设四个解依次增大,则是方程的解,则,即;是方程的解,则由余弦型函数的对称性可知.故,由得即当时,单调递减,则故答案为:①;②13、【解析】由否定的定义写出即可.【详解】命题“”的否定是“”故答案为:14、##【解析】利用扇形的面积公式列方程即可求解.【详解】设扇形的圆心角为,扇形的面积即,解得,所以扇形的圆心角为弧度,故答案为:.15、【解析】由条件可得a<0,且1+2=,1×2=.b=a>0,c=2a>0,可得要解得不等式即x2+x>0,由此求得它的解集【详解】∵关于x的不等式ax2+bx+c>0的解集为{x|1<x<2},∴a<0,且1+2=,1×2=∴b=a>0,c=2a>0,∴=,=故关于x的不等式cx2+bx+a>0,即x2+x>0,即(x+1)(x)>0,故x<1或x>,故关于x的不等式cx2+bx+a>0的解集是,故答案为【点睛】本题主要考查一元二次不等式的解法,一元二次方程根与系数的关系,属于基础题16、-1【解析】根据幂函数的定义,令m2﹣m﹣1=1,求出m的值,再判断m是否满足幂函数当x∈(0,+∞)时为减函数即可【详解】解:∵幂函数,∴m2﹣m﹣1=1,解得m=2,或m=﹣1;又x∈(0,+∞)时,f(x)为减函数,∴当m=2时,m2+m﹣3=3,幂函数为y=x3,不满足题意;当m=﹣1时,m2+m﹣3=0,幂函数为y=x﹣3,满足题意;综上,m=﹣1,故答案为﹣1【点睛】本题考查了幂函数的定义与图像性质的应用问题,解题的关键是求出符合题意的m值三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)先化简集合A,B,再利用交集运算求解;(2)根据,化简集合,再根据求解.【小问1详解】解:∵,∴,∴集合.∵,∴,∴集合.∴.【小问2详解】∵,∴.∵,∴,解得.∴实数a的取值范围是.18、(1),平均数为岁(2)【解析】(1)根据频率之和等于得出的值,再由频率分布直方图中的数据计算平均数;(2)根据分层抽样确定第1,2组中抽取的人数,再由列举法结合古典概型的概率公式得出概率.【小问1详解】由,得平均数为岁.【小问2详解】第1,2组的人数分别为人,人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为,,,,从5人中随机抽取2人,样本空间可记为,,,,,,,,,,用表示“2人中恰有1人年龄在”,则,,,,,,包含的样本点个数是6.所以2人中恰有1人年龄在中的概率19、(1)或;(2).【解析】(1)根据一元二次不等式的解法求出集合、,即可求出;(2)由,可知,得到不等式组,即得.【小问1详解】∵,,,或,∴或;【小问2详解】∵,,由,得,,解得,∴实数的值取范围为.20、(1);(2)是上的增函数;(3).【解析】(1)利用奇函数的定义直接求解即可;(2)用函数的单调性的定义,结合指数函数的单调性直接求解即可;(3)利用函数的奇函数的性质、单调性原问题可以转化为在上恒成立,利用换元法,再转化为一元二次不等式恒成立问题,分类讨论,最后求出的取值范围.【详解】(1)函数是上的奇函数即即解得;(2)由(1)知设,则故,,故即是上的增函数(3)是上的奇函数,是上的增函数在上恒成立等价于等价于在上恒成立即在上恒成立“*”令则“*”式等价于对时恒成立“

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论