版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届江西师范大学附中高二上数学期末学业水平测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.有关椭圆叙述错误的是()A.长轴长等于4 B.短轴长等于4C.离心率为 D.的取值范围是2.若双曲线的离心率为3,则的最小值为()A. B.1C. D.23.已知函数的定义域为,其导函数为,若,则下列式子一定成立的是()A. B.C. D.4.阿基米德(Archimedes,公元前287年-公元前212年),出生于古希腊西西里岛叙拉古(今意大利西西里岛上),伟大的古希腊数学家、物理学家,与高斯、牛顿并称为世界三大数学家.有一类三角形叫做阿基米德三角形(过抛物线的弦与过弦端点的两切线所围成的三角形),他利用“通近法”得到抛物线的弦与抛物线所围成的封闭图形的面积等于阿基米德三角形面积的(即右图中阴影部分面积等于面积的).若抛物线方程为,且直线与抛物线围成封闭图形的面积为6,则()A.1 B.2C. D.35.执行下图所示的程序框图,则输出的值为()A.5 B.6C.7 D.86.与直线平行,且经过点(2,3)的直线的方程为()A. B.C. D.7.已知命题:,,命题:,,则()A.是假命题 B.是真命题C.是真命题 D.是假命题8.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,他所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,而是逐项差数之差或者高次差相等.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有一个高阶等差数列,其前7项分别为1,5,11,21,37,61,95,则该数列的第7项为()A.101 B.99C.95 D.919.函数在处有极小值5,则()A. B.C.或 D.或310.设双曲线:的左,右焦点分别为,,过的直线与双曲线的右支交于A,B两点,若,则双曲线的离心率为()A.4 B.2C. D.11.已知关于的不等式的解集是,则的值是()A B.5C. D.712.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知平面向量均为非零向量,且满足,记向量在向量上投影向量为,则k=______.(用数字作答)14.同时掷两枚骰子,则点数和为7的概率是__________.15.定义在上的函数满足,且对任意都有,则不等式的解集为__________.16.分别过椭圆的左、右焦点、作两条互相垂直的直线、,它们的交点在椭圆的内部,则椭圆的离心率的取值范围是________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了符合国家制定的工业废气排放标准,某工厂在国家科研部门的支持下,进行技术攻关,采用新工艺,对其排放的废气中的二氧化硫转化为一种可利用的化工产品.已知该工厂每月的处理量最少为300吨,最多为600吨,月处理成本y(元)与月处理量x(吨)之间的函数关系可近似地表示为,且每处理一吨二氧化硫得到可利用的化工产品价值为200元(1)该工厂每月处理量为多少吨时,才能使每吨的平均处理成本最低?(2)该工厂每月能否获利?如果获利,求出最大利润:如果不获利,则国家每月至少应补贴多少元才能使工厂不亏损?18.(12分)已知等比数列前3项和为(1)求的通项公式;(2)若对任意恒成立,求m的取值范围19.(12分)求满足下列条件的圆锥曲线的标准方程:(1)已知椭圆的焦点在x轴上且一个顶点为,离心率为;(2)求一个焦点为,渐近线方程为的双曲线的标准方程;(3)抛物线,过其焦点斜率为1的直线交抛物线于A、B两点,且线段AB的中点的纵坐标为2.20.(12分)已如椭圆C:=1(a>b>0)的有顶点为M(2,0),且离心率e=,点A,B是椭圆C上异于点M的不同的两点(Ⅰ)求椭圆C的方程;(Ⅱ)设直线MA与直线MB的斜率分别为k1,k2,若k1•k2=,证明:直线AB一定过定点21.(12分)已知函数(m≥0).(1)当m=0时,求曲线在点(1,f(1))处的切线方程;(2)若函数的最小值为,求实数m的值.22.(10分)如图,已知菱形ABCD的边长为3,对角线,将△沿着对角线BD翻折至△的位置,使得,在平面ABCD上方存在一点M,且平面ABCD,(1)求证:平面平面ABD;(2)求点M到平面ABE的距离;(3)求二面角的正弦值
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】根据题意求出,进而根据椭圆的性质求得答案.【详解】椭圆方程化为:,则,则长轴长为8,短轴长为4,离心率,x的取值范围是.即A错误,B,C,D正确.故选:A.2、D【解析】由双曲线的离心率为3和,求得,化简,结合基本不等式,即可求解.【详解】由题意,双曲线的离心率为3,即,即,又由,可得,所以,当且仅当,即时,“”成立.故选:D【点睛】使用基本不等式解答问题的策略:1、利用基本不等式求最值时,要注意三点:一是各项为正;二是寻求定值;三是考虑等号成立的条件;2、若多次使用基本不等式时,容易忽视等号的条件的一致性,导致错解;3、巧用“拆”“拼”“凑”:在使用基本不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足基本不等式中的“正、定、等”的条件.3、B【解析】令,求出函数的导数,得到函数的单调性,即可得到,从而求出答案【详解】解:令,则,又不等式恒成立,所以,即,所以在单调递增,故,即,所以,故选:B4、D【解析】根据题目所给条件可得阿基米德三角形的面积,再利用三角形面积公式即可求解.【详解】由题意可知,当过焦点的弦垂直于x轴时,即时,,即,故选:D5、C【解析】直接按照程序框图运行即可得正确答案.【详解】当时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,不成立,时,成立,输出的值为,故选:C.6、C【解析】由直线平行及直线所过的点,应用点斜式写出直线方程即可.【详解】与直线平行,且经过点(2,3)的直线的方程为,整理得故选:C7、C【解析】先分别判断命题、的真假,再利用逻辑联结词“或”与“且”判断命题的真假.【详解】由题意,,所以,成立,即命题为真命题,,所以不存在,使得,即命题为假命题,所以是假命题,为真命题,所以是真命题,是假命题,是假命题,是真命题.故选:C8、C【解析】根据所给数列找到规律:两次后项减前项所得数列为公差为2的数列,进而反向确定原数列的第7项.【详解】根据所给定义,用数列的后一项减去前一项得到一个数列,得到的数列也用后一项减去前一项得到一个数列,即得到了一个等差数列,如图:故选:C.9、A【解析】由题意条件和,可建立一个关于的方程组,解出的值,然后再将带入到中去验证其是否满足在处有极小值,排除增根,即可得到答案.【详解】由题意可得,则,解得,或.当,时,.由,得;由,得.则在上单调递增,在上单调递减,故在处有极大值5,不符合题意.当,时,.由,得;由,得.则在上单调递减,在上单调递增,故在处有极小值5,符合题意,从而故选:A.10、B【解析】根据双曲线的定义及,求出,,,,再利用余弦定理计算可得;【详解】解:依题意可知、,又且,所以,,,,则,且,即,即,所以离心率.故选:B11、D【解析】由题意可得的根为,然后利用根与系数的关系列方程组可求得结果【详解】因为关于的不等式的解集是,所以方程的根为,所以,得,所以,故选:D12、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.二、填空题:本题共4小题,每小题5分,共20分。13、##1.5【解析】由两边平方可得,,,设,向量是以向量为邻边的平行四边形、有共同起点的对角线,,由余弦定理可得,向量在向量上投影向量为,化简可得答案.【详解】因为,所以,,两边平方整理得,,两边平方整理得,即,可得,,设,所以向量是以向量为邻边的平行四边形、有共同起点的对角线,如图,即,因为,,平行四边形即为的菱形,所以,由余弦定理可得,可得,,向量在向量上投影向量为,即.故答案为:.14、【解析】利用古典概型的概率计算公式即得.【详解】依题意,记抛掷两颗骰子向上的点数分别为,,则可得到数组共有组,其中满足的组数共有6组,分别为,,,,,,因此所求的概率等于.故答案为:.15、【解析】利用构造函数法,结合导数来求得不等式的解集.【详解】构造函数,,所以在上递减,由,得,即,所以,即等式的解集为.故答案为:16、【解析】根据条件可知以为直径的圆在椭圆的内部,可得,再根据,即可求得离心率的取值范围.【详解】根据条件可知,以为直径的圆与椭圆没有交点,即,即,,即.故填:.【点睛】本题考查椭圆离心率的取值范围,求椭圆离心率是常考题型,涉及的方法包含1.根据直接求,2.根据条件建立关于的齐次方程求解,3.根据几何关系找到的等量关系求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)600吨(2)该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损【解析】(1)设该工厂每吨平均处理成本为z,,利用基本不等式求最值可得答案;(2)设该工厂每月的利润为,利用配方求最值可得答案.【小问1详解】设该工厂每吨平均处理成本为z,,∴,当且仅当,即时取等号,当时,每吨平均处理成本最低.【小问2详解】设该工厂每月的利润为,则,∴,当时,,所以该工厂不获利,且需要国家每月至少补贴52500元才能使工厂不亏损.18、(1)(2)【解析】(1)由等比数列的基本量,列式,即可求得首项和公比,再求通项公式;(2)由题意转化为求数列的前项和的最大值,即可求参数的取值范围.【小问1详解】设等比数列的公比为,则,①,即,得,即,代入①得,解得:,所以;【小问2详解】由(1)可知,数列是首项为2,公比为的等比数列,,若对任意恒成立,即,数列,,单调递增,的最大值无限趋近于4,所以19、(1)(2)(3)【解析】(1)设椭圆的标准方程为,根据题意,进而结合求解即可得答案;(2)设双曲线的方程为,进而结合题意得,,再结合解方程即可得答案;、(3)根据题意设直线的方程为,进而与抛物线联立方程并消去得,再结合韦达定理得,进而得答案.【小问1详解】解:根据题意,设椭圆的标准方程为,因为顶点为,离心率为,所以,所以,所以椭圆的方程为【小问2详解】解:因为双曲线的一个焦点为,设双曲线的方程为,因为渐近线方程为,所以,因为所以,所以双曲线的标准方程为【小问3详解】解:由题知抛物线的焦点为,因为过抛物线焦点斜率为1的直线交抛物线于A、B两点,所以直线的方程为,所以联立方程,消去得,设,所以,因为线段AB的中点的纵坐标为2,所以,解得.所以抛物线的标准方程为.20、(I);(II)证明见解析.【解析】(I)根据顶点坐标求得,根据离心率求得,由此求得,进而求得椭圆方程.(II)设出直线的方程,联立直线的方程和椭圆方程,写出根与系数关系,根据,求得的关系式,由此判断直线过定点.【详解】(I)由于是椭圆的顶点,所以,由于,所以,所以,所以椭圆方程为.(II)由于是椭圆上异于点的不同的两点,所以可设直线的方程为,设,由消去并化简得,所以,即.,,,,解得,所以直线的方程为,过定点.【点睛】本小题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,考查椭圆中的定值问题.21、(1)(2)【解析】(1)求导,利用导函数的几何意义求解切线方程的斜率,进而求出切线方程;(2)对导函数再次求导,判断其单调性,结合隐零点求出其最小值,列出方程,求出实数m的值.【小问1详解】当时,因为,所以切线的斜率为,所以切线方程为,即.【小问2详解】因为,令,因为,所以在上单调递增,当实数时,,;当实数时,,;当实数时,,所以总存在一个,使得,且当时,;当时,,所以,令,因为,所以单调递减,又,所以时,所以,即.22、(1)证明见解析;(2)1;(3).【解析】(1)过E作EO垂直于BD于O,连接AO,由勾股定义易得,由菱形的性质有,再根据线面垂直、面面垂直的判定即可证结论.(2)构建空间直角坐标系,确定相关点的坐标,进而求的坐标及面ABE的法向量,应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度演出经纪合同标的及分成3篇
- 二零二四年度人工智能研发与推广合同
- 2024年度多媒体会议系统安装与维护承包合同3篇
- 2024年度无人机应用开发及销售合同2篇
- 二零二四年度租赁合同:商业设备租赁与维修服务2篇
- 《密码子偏好性分析》课件
- 卵巢小细胞癌的临床护理
- 阅读理解大解析
- 2024年度广告投放合同服务内容扩展2篇
- 筛窦恶性肿瘤的临床护理
- 奇瑞终身质保合同范本
- 北师大版四年级数学上册第一单元《认识更更大的数》(大单元教学设计)
- 上睑下垂的护理
- 2024年交管12123学法减分考试试题库及答案
- 中药贴敷疗法
- 小学数学六年级下册期末测试卷含答案(综合题)
- 移变高低压培训(合订版)
- DZ∕T 0054-2014 定向钻探技术规程(正式版)
- 国内外供应链研究现状分析
- 国家开放大学-法学专业-2023年秋季《法律文化》形成性考核作业答案
- 中华优+秀传统文化智慧树知到期末考试答案章节答案2024年浙江金融职业学院
评论
0/150
提交评论