版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省瓦房店高级中学高一上数学期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在区间(0,1)内的零点个数是A.0 B.1C.2 D.32.已知函数,当时.方程表示的直线是()A. B.C. D.3.设a是方程的解,则a在下列哪个区间内()A.(0,1) B.(3,4)C.(2,3) D.(1,2)4.已知,则下列选项错误的是()A. B.C.的最大值是 D.的最小值是5.已知函数,且,则()A. B.C. D.6.已知幂函数的图象过点,则的定义域为()A.R B.C. D.7.已知,则()A.a<b<c B.a<c<bC.c<a<b D.b<c<a8.命题“”的否定是()A. B.C. D.9.设,,,则的大小关系是()A. B.C. D.10.已知函数,现有下列四个结论:①对于任意实数a,的图象为轴对称图形;②对于任意实数a,在上单调递增;③当时,恒成立;④存在实数a,使得关于x的不等式的解集为其中所有正确结论的序号是()A.①② B.③④C.②③④ D.①②④二、填空题:本大题共6小题,每小题5分,共30分。11.已知在上的最大值和最小值分别为和,则的最小值为__________12.函数定义域为___________13.将正方形ABCD沿对角线BD折成直二面角A-BD-C,有如下四个结论①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;④AB与CD所成的角是60°.其中正确结论的序号是________14.已知函数=,若对任意的都有成立,则实数的取值范围是______15.若函数,则函数的值域为___________.16.命题的否定是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知命题,且,命题,且,(1)若,求实数a的取值范围;(2)若p是q的充分条件,求实数a的取值范围18.如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1∥平面BCHG.19.已知函数(1)求的值(2)求函数的最小正周期及其图像的对称轴方程(3)对于任意,均有成立,求实数的取值范围20.已知函数.(1)求其最小正周期和对称轴方程;(2)当时,求函数的单调递减区间和值域.21.已知集合,集合(1)当时,求;(2)若,求实数的取值范围
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】,在范围内,函数为单调递增函数.又,,,故在区间存在零点,又函数为单调函数,故零点只有一个考点:导函数,函数零点2、C【解析】先利用对数函数的性质得到所以,再利用直线的斜率和截距判断.【详解】因为时,,所以则直线的斜率为,在轴上的截距故选:C3、C【解析】设,再分析得到即得解.【详解】由题得设,由零点定理得a∈(2,3).故答案为C【点睛】本题主要考查函数的零点和零点定理,意在考查学生对这些知识的掌握水平和分析推理能力.4、D【解析】根据题意求出b的范围可以判断A,然后结合基本不等式判断B,C,最后消元通过二次函数的角度判断D.【详解】对A,,正确;对B,,当且仅当时取“=”,正确;对C,,当且仅当时取“=”,正确;对D,由题意,,由A可知,所以,错误.故选:D.5、B【解析】构造函数,判断的单调性和奇偶性,由此化简不等式,即得.【详解】∵函数,令,则,∴的定义域为,,所以函数为奇函数,又,当增大时,增大,即在上递增,由,可得,即,∴,∴,即.故选:B.6、C【解析】设,点代入即可求得幂函数解析式,进而可求得定义域.【详解】设,因为的图象过点,所以,解得,则,故的定义域为故选:C7、A【解析】找中间量0或1进行比较大小,可得结果【详解】,所以,故选:A.【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题8、B【解析】根据特称命题的否定为全称命题,将并否定原结论,写出命题的否定即可.【详解】由原命题为特称命题,故其否定为“”.故选:B9、C【解析】根据对数函数和幂函数单调性可比较出大小关系.【详解】,;,,,即,又,.故选:C.10、D【解析】根据函数的解析式,可知其关于直线,可判断①正确;是由与相加而成,故该函数为单调函数,由此可判断②;根据的函数值情况可判断③;看时情况,结合函数的单调性,可判断④的正误.【详解】对①,因为函数与|的图象都关于直线对称,所以的图象关于直线对称,①正确对②,当时,函数与都单调递增,所以也单调递增,②正确对③,当时,,③错误对④,因为图象关于直线对称,在上单调递减,在上单调递增,且,所以存在,使得的解集为,④正确故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】如图:则当时,即时,当时,原式点睛:本题主要考查了分段函数求最值问题,在定义域为动区间的情况下进行分类讨论,先求出最大值与最小值的情况,然后计算,本题的关键是要注意数形结合,结合图形来研究最值问题,本题有一定的难度12、[0,1)【解析】要使函数有意义,需满足,函数定义域为[0,1)考点:函数定义域13、①②④【解析】①取BD的中点O,连接OA,OC,所以,所以平面OAC,所以AC⊥BD;②设正方形的边长为a,则在直角三角形ACO中,可以求得OC=a,所以△ACD是等边三角形;③AB与平面BCD成45角;④分别取BC,AC的中点为M,N,连接ME,NE,MN.则MN∥AB,且MN=AB=a,ME∥CD,且ME=CD=a,∴∠EMN是异面直线AB,CD所成的角.在Rt△AEC中,AE=CE=a,AC=a,∴NE=AC=a.∴△MEN是正三角形,∴∠EMN=60°,故④正确考点:本小题主要考查平面图形向空间图形的折叠问题,考查学生的空间想象能力.点评:解决此类折叠问题,关键是搞清楚折叠前后的变量和不变的量.14、【解析】转化为对任意的都有,再分类讨论求出最值,代入解不等式即可得解.【详解】因为=,所以等价于,等价于,所以对任意的都有成立,等价于,(1)当,即时,在上为减函数,,在上为减函数,,所以,解得,结合可得.(2)当,即时,在上为减函数,,在上为减函数,在上为增函数,或,所以且,解得.(3)当,即时,,在上为减函数,,在上为增函数,,所以,解得,结合可知,不合题意.(4)当,即时,在上为减函数,在上为增函数,,在上为增函数,,此时不成立.(5)当时,在上为增函数,,在上为增函数,,所以,解得,结合可知,不合题意.综上所述:.故答案为:15、【解析】求出函数的定义域,进而求出的范围,利用换元法即可求出函数的值域.【详解】由已知函数的定义域为又,定义域需满足,令,因为,所以,利用二次函数的性质知,函数的值域为故答案为:.16、;【解析】根据存在量词的命题的否定为全称量词命题即可得解;【详解】解:因为命题“”为存在量词命题,其否定为全称量词命题为故答案为:三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】(1)由可得,解不等式求出a的取值范围即可;(2)把p是q的充分条件转化为集合A和集合B之间的关系,运用集合的知识列出不等式组求解a的范围即可.【详解】(1),,解之得:,故a的取值范围为;(2)或,p是q的充分条件,,或,解之得:或,故实数a的取值范围为.【点睛】本题考查元素与集合间的关系,考查充分条件的应用,考查逻辑思维能力和运算能力,属于常考题.18、(1)证明见解析;(2)证明见解析.【解析】(1)证明,再由,由平行公理证明,证得四点共面;(2)证明,证得面,再证得,证得面,从而证得平面EFA1∥平面BCHG.【详解】(1)∵G,H分别是A1B1,A1C1的中点,∴GH是△A1B1C1的中位线,∴GH∥B1C1.又∵B1C1∥BC,∴GH∥BC,∴B,C,H,G四点共面(2)∵E,F分别是AB,AC的中点,∴EF∥BC.∵EF⊄平面BCHG,BC⊂平面BCHG,∴EF∥平面BCHG.∵A1GEB且,∴四边形A1EBG是平行四边形,∴A1E∥GB.∵A1E⊄平面BCHG,GB⊂平面BCHG,∴A1E∥平面BCHG.∵A1E∩EF=E,∴平面EFA1∥平面BCHG.【点睛】本题考查了四点共面的证明,面面平行的判定,考查对基本定理的掌握与应用,空间想象能力,要注意线线平行、线面平行、面面平行之间的相互转化,属于中档题.19、(1)0;(2);(3).【解析】(1)由三角函数的和差公式,倍角公式,辅助角公式化简原式,带入求值即可.(2)由化简后的表达式代入公式即可求的.(3)恒成立问题,第一步求出函数的单调区间,结合函数性质即可解得.【小问1详解】化简如下:.【小问2详解】由(1)可知,周期,对称轴.【小问3详解】,所以任意,均有,解出函数的单调性增区间,,所以在递增,成立,递减,由对称性可知,所以,所以20、(1)最小正周期为,对称轴方程;(2)单调递减区间为,值域为.【解析】(1)利用倍角公式、辅助角公式化简函数,结合正弦函数的性质计算作答.(2)确定函数的相位范围,再借助正弦函数的性质计算作答.【小问1详解】依题意,,则,由解得:,所以,函数的最小正周期为,对称轴方程为.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年清水台建设劳务分包协议
- 电子课表课程设计
- 2024年度退休返聘企业技术顾问合同协议3篇
- 2024年度新能源车展位租赁及推广合作协议3篇
- 2024年虚拟股权权益分配协议样本版B版
- 猜纸牌c 课程设计
- 2024年度地暖工程安装与节能评估报告编制合同3篇
- 精压机课程设计装
- 2024年度质押式借款合同范本:高新技术企业贷款3篇
- 海盗船控制系统课程设计
- 新版第三类医疗器械分类目录
- 安防主管岗位招聘面试题及回答建议(某大型集团公司)2025年
- 医疗企业未来三年战略规划
- 急诊科运用PDCA循环降低急诊危重患者院内转运风险品管圈QCC专案结题
- 《资治通鉴》导读学习通超星期末考试答案章节答案2024年
- 2024年统编版新教材语文小学一年级上册全册单元测试题及答案(共8单元)
- 2024-2025学年一年级上册数学人教版期末模拟练习题(含答案)
- 可降解包装材料采购合作合同
- 医院老人去世后遗体处理及管理流程
- 2025年中考数学考点分类专题归纳之二次函数
- 护士急诊科进修汇报
评论
0/150
提交评论