2024年江西省吉水县外国语学校九上数学开学联考模拟试题【含答案】_第1页
2024年江西省吉水县外国语学校九上数学开学联考模拟试题【含答案】_第2页
2024年江西省吉水县外国语学校九上数学开学联考模拟试题【含答案】_第3页
2024年江西省吉水县外国语学校九上数学开学联考模拟试题【含答案】_第4页
2024年江西省吉水县外国语学校九上数学开学联考模拟试题【含答案】_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共8页2024年江西省吉水县外国语学校九上数学开学联考模拟试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,在正方形中,,是正方形的外角,是的角平分线上任意一点,则的面积等于()A.1 B. C.2 D.无法确定2、(4分)下列各曲线中表示y是x的函数的是()A. B. C. D.3、(4分)如图,矩形中,是边的中点,是边上一点,,,,则线段的长为()A. B. C. D.4、(4分)函数y=x和在同一直角坐标系中的图象大致是()A. B. C. D.5、(4分)如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是()A. B.10C. D.126、(4分)下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A. B. C. D.7、(4分)如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是(

)A.四边形ABCD由矩形变为平行四边形

B.BD的长度增大C.四边形ABCD的面积不变 D.四边形ABCD的周长不变8、(4分)将抛物线y=x2﹣4x﹣4向左平移3个单位,再向上平移5个单位,得到抛物线的函数表达式为()A.y=(x+1)2﹣13 B.y=(x﹣5)2﹣3C.y=(x﹣5)2﹣13 D.y=(x+1)2﹣3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.10、(4分)如图,在△ABC中,AD⊥DE,BE⊥DE,AC、BC分别平分∠BAD和∠ABE.点C在线段DE上.若AD=5,BE=2,则AB的长是_____.11、(4分)根据如图所示的计算程序计算变量y的对应值,若输入变量x的值为﹣,则输出的结果为_____12、(4分)已知正n边形的一个外角是45°,则n=____________13、(4分)如图所示,在中,,在同一平面内,将绕点逆时针旋转到△的位置,使,则___.三、解答题(本大题共5个小题,共48分)14、(12分)如图,在直角坐标系中,A(﹣1,2),B(﹣4,﹣2).(1)分别作点A,B关于原点的对称点C,D,并写出点C,点D的坐标;(2)依次连接AB,BC,CD,DA,并证明四边形ABCD是平行四边形.15、(8分)计算:(-)2×()-2+(-2019)016、(8分)如图,在菱形中,,垂足为点,且为边的中点.(1)求的度数;(2)如果,求对角线的长.17、(10分)化简:÷(a-4)-.18、(10分)某校八年级学生进行了一次视力调查,绘制出频数分布表和频数直方图的一部分如下:请根据图表信息完成下列各题:(1)在频数分布表中,的值为,的值是;(2)将频数直方图补充完整;(3)小芳同学说“我的视力是此次调查所得数据的中位数”,你觉得小芳同学的视力应在哪个范围内?(1)若视力在不小于1.9的均属正常,请你求出视力正常的人数占被调查人数的百分比.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)不等式的负整数解有__________.20、(4分)若是一个完全平方式,则的值等于_________.21、(4分)如图,一次函数y1=x+b与一次函数y2=kx+4的图象交于点P(1,3),则关于x的不等式x+b>kx+4的解集是_____.22、(4分)如图,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,其中顶点,分别在边,上,小长方形的长与宽的比值为,则的值为_____.23、(4分)李明同学进行射击练习,两发子弹各打中5环,四发子弹各打中8环,三发子弹各打中9环.一发子弹打中10环,则他射击的平均成绩是________环.二、解答题(本大题共3个小题,共30分)24、(8分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.25、(10分)某中学开学初到商场购买、两种品牌的足球,购买种品牌的足球50个,种品牌的足球25个,共花费4500元,已知购买一个种品牌的足球比购买一个种品牌的足球少30元.(1)求购买一个种品牌、一个种品牌的足球各需多少钱.(2)学校为了响应“足球进校园”的号召,决定再次购进、两种品牌足球共50个,正好赶上商场对商品价格进行调整,品牌的足球售价上涨4元,品牌足球按原售价的9折出售,如果学校第二次购买足球的总费用不超过第一次花费的,且保证品牌足球不少于23个,则学校有几种购买方案?(3)求出学校在第二次购买活动中最多需要多少钱?26、(12分)如图,在平面直角坐标系中,以原点为位似中心,将放大到原来的倍后得到,其中、在图中格点上,点、的对应点分别为、。(1)在第一象限内画出;(2)若的面积为3.5,求的面积。

参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】

由于BD∥CF,以BD为底边,以BD边对应的高为边长计算三角形的面积即可.【详解】过C点作CG⊥BD于G,∵CF是∠DCE的平分线,∴∠FCE=45°,∵∠DBC=45°,∴CF∥BD,∴CG等于△PBD的高,∵BD=2,∴GC=BG==1,△PBD的面积等于.故答案为:1.本题考查正方形的性质,角平分线的性质,解决本题的关键是证明△BPD以BD为底时高与GC相等.2、D【解析】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.3、A【解析】

延长﹑交于点,先证得得出,,再由勾股定理得,然后设,根据勾股定理列出方程得解.【详解】解:延长﹑交于点,则,∴,,∵,∴,∴,∴,∴由勾股定理得,设,在和中,则,解得.故选:A本题考查了勾股定理的应用,添加辅助线构造全等三角形,运用勾股定理列出方程是解本题的关键.4、D【解析】分析:根据正比例函数和一次函数的图象与系数的关系进行判断即可.详解:根据正比例函数和反比例函数的性质可得的图象经过一、三象限,图象在二、四象限,符合条件的只有选项D,故选D.点睛:考查正比例函数和反比例函数图象与系数的关系,熟练掌握它们的图象与性质是解题的关键.5、B【解析】

点C关于OA的对称点C′(-1,0),点C关于直线AB的对称点C″(7,6),连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,可以证明这个最小值就是线段C′C″.【详解】解:如图,点C(1,0)关于y轴的对称点C′(-1,0),点C关于直线AB的对称点C″,

∵直线AB的解析式为y=-x+7,

∴直线CC″的解析式为y=x-1,

由解得,

∴直线AB与直线CC″的交点坐标为K(4,3),

∵K是CC″中点,C(1,0),设C″坐标为(m,n),∴,解得:

∴C″(7,6).

连接C′C″与AO交于点E,与AB交于点D,此时△DEC周长最小,

△DEC的周长=DE+EC+CD=EC′+ED+DC″=C′C″=故答案为1.本题考查轴对称-最短问题、两点之间距离公式等知识,解题的关键是利用对称性在找到点D、点E位置,将三角形的周长转化为线段的长.6、B【解析】由中心对称图形的定义:“把一个图形绕一个点旋转180°后,能够与自身完全重合,这样的图形叫做中心对称图形”分析可知,上述图形中,A、C、D都不是中心对称图形,只有B是中心对称图形.故选B.7、C【解析】试题分析:由题意可知,当向右扭动框架时,BD可伸长,故BD的长度变大,四边形ABCD由矩形变为平行四边形,因为四条边的长度不变,所以四边形ABCD的周长不变.原来矩形ABCD的面积等于BC乘以AB,变化后平行四边形ABCD的面积等于底乘以高,即BC乘以BC边上的高,BC边上的高小于AB,所以四边形ABCD的面积变小了,故A,B,D说法正确,C说法错误.故正确的选项是C.考点:1.四边形面积计算;2.四边形的不稳定性.8、D【解析】

因为y=x2-4x-4=(x-2)2-8,以抛物线y=x2-4x-4的顶点坐标为(2,-8),把点(2,-8)向左平移1个单位,再向上平移5个单位所得对应点的坐标为(-1,-1),所以平移后的抛物线的函数表达式为y=(x+1)2-1.故选D.二、填空题(本大题共5个小题,每小题4分,共20分)9、10.【解析】

根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.【详解】∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在RtΔBAC1中,BC1的长=,故答案为:10.本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.10、1【解析】

过点C作CF⊥AB于F,由角平分线的性质得CD=CF,CE=CF,于是可证△ADC≌△AFC,△CBE≌△CBF,可得AD=AF,BE=BF,即可得结论.【详解】解:如图,过点C作CF⊥AB于F,

∵AC,BC分别平分∠BAD,∠ABE,

∴CD=CF,CE=CF,

∵AC=AC,BC=BC,

∴△ADC≌△AFC,△CBE≌△CBF,

∴AF=AD=5,BF=BE=2,

∴AB=AF+BF=1.故答案是:1.本题考查全等三角形的判定和性质,角平分线的性质,添加恰当辅助线构造全等三角形是本题的关键.11、-1.5【解析】

∵-2<<1,∴x=时,y=x-1=,故答案为.12、8【解析】

解:∵多边形的外角和为360°,正多边形的一个外角45°,∴多边形得到边数360÷45=8,所以是八边形.故答案为813、40°【解析】

由旋转性质可知,,从而可得出为等腰三角形,且和已知,得出的度数.则可得出答案.【详解】解:绕点逆时针旋转到△的位置本题考查了旋转的性质:对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.解题的关键是抓住旋转变换过程中不变量,判断出是等腰三角形.三、解答题(本大题共5个小题,共48分)14、(1)点C,点D的坐标分别为:(1,﹣2),(4,2);(2)见解析.【解析】

(1)直接利用关于原点对称点的性质进而得出答案;(2)利用平行四边形的判定方法得出答案.【详解】(1)解:∵A(﹣1,2),B(﹣4,﹣2),点A,B关于原点的对称点C,D,∴点C,点D的坐标分别为:(1,﹣2),(4,2);(2)证明:∵AD=BC=4+1=5,∵A(﹣1,2),B(﹣4,﹣2),C(1,﹣2),D(4,2);∴AD∥BC,∴四边形ABCD是平行四边形.此题主要考查了旋转变换以及平行四边形的判定,正确把握平行四边形的判定方法是解题关键.15、2【解析】

分别计算乘方,负指数幂,零次幂,然后再按运算顺序进行计算即可.【详解】原式=×4+1=1+1=2.考查了实数运算,解题关键是熟记其运算法则.16、(1);(2)【解析】

(1)根据线段垂直平分线的性质可得DB=AD,即可证△ADB是等边三角形,可得∠A=60°

(2)由题意可得∠DAC=30°,AC⊥BD,可得DO=2,AO=2,即可求AC的长.【详解】连接,(1)∵四边形是菱形∴∵是中点,∴∴∴是等边三角形∴.(2)∵四边形是菱形∴,,,∵∴,∴本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.17、【解析】

先利用平方差公式对进行因式分解,然后把除法运算转化为乘法运算,能约分的要约分,最后进行减法运算即可.【详解】原式===本题主要考查分式的混合运算,掌握分式混合运算顺序和法则是解题的关键.18、(1)60,0.2;(2)见解析;(3)在之间;(1)【解析】

(1)用频数除以对应的频率可得调查的总人数,再用总人数乘以0.3即可得a的值,用10除以总人数即可得b的值;(2)根据a的值补图即可;(3)根据总人数和中位数的定义可知中位数所在的小组,即为小芳的视力范围;(1)根据表格数据求出视力大于等于1.9的学生人数,再除以总人数即可得百分比.【详解】(1)调查总人数为(人)则,故答案为:60,0.2.(2)如图所示,(3)调查总人数为200人,由表可知中位数在之间,∴小芳同学的视力在之间(1)视力大于等于1.9的学生人数为60+10=70人,∴视力正常的人数占被调查人数的百分比是:本题考查读频数直方图和利用统计图获取信息,理解统计表与直方图的关系,掌握中位数的定义是解题的关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、-5、-4、-3、-2、-1【解析】

求出不等式的解集,取解集范围内的负整数即可.【详解】解:移项得:合并同类项得:系数化为1得:即所以原不等式的负整数解为:-5、-4、-3、-2、-1故答案为:-5、-4、-3、-2、-1本题主要考查了求不等式的整数解,确定不等式的解集是解题的关键.20、【解析】

根据完全平方公式的特点即可求解.【详解】∵是完全平方式,即为,∴.故答案为.此题主要考查完全平方公式,解题的关键是熟知完全平方公式的特点.21、x>1.【解析】试题解析:∵一次函数与交于点,∴当时,由图可得:.故答案为.22、【解析】

连结,作于,根据中心对称图形的定义和相似三角形的性质可得两直角边的比是,进一步得到长与宽的比即可.【详解】解:连结,作于,在矩形内放入四个小正方形和两个小长方形后成中心对称图形,,,,长与宽的比为,即,故答案为:.此题考查了中心对称图形、相似三角形的性质、全等三角形的性质、矩形的性质、正方形的性质等知识,关键是理解直角三角形两直角边的比是.23、7.9【解析】分析:根据平均数的定义进行求解即可得.详解:由题意得:故答案为点睛:本题考查了算术平均数,熟练掌握算术平均数的定义是解题的关键.二、解答题(本大题共3个小题,共30分)24、(1)证明见解析(2)1【解析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.25、(1)购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元;(2)有三种方案,详见解析;(3)最多需要3150元.【解析】

(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及购买一个种品牌的足球比购买一个种品牌的足球少30元”可得出关于x、y的二元一次方程组,解方程组即可得出结

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论