版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页2024年江苏省盐城市东台市第一教育集团数学九年级第一学期开学达标测试试题题号一二三四五总分得分批阅人A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)如图,平行四边形ABCD的对角线AC与BD相交于点O,要使它成为矩形,需再添加的条件是()A.AO=OC B.AC=BD C.AC⊥BD D.BD平分∠ABC2、(4分)如图,DC⊥AC于C,DE⊥AB于E,并且DE=DC,则下列结论中正确的是()A.DE=DF B.BD=FD C.∠1=∠2 D.AB=AC3、(4分)设矩形的面积为S,相邻两边的长分别为a,b,已知S=2,b=,则a等于()A.2 B. C. D.4、(4分)若一个正多边形的每一个外角都等于40°,则它是().A.正九边形 B.正十边形 C.正十一边形 D.正十二边形5、(4分)将直线y=3x向下平移4个单位后所得直线的解析式为()A.y=3x+4 B.y=3x-4 C.y=3x+46、(4分)函数的图象如图所示,则结论:①两函数图象的交点的坐标为(2,2);②当x>2时,;③当x=1时,BC=3;④当x逐渐增大时,随着的增大而增大,随着的增大而减小.则其中正确结论的序号是()A.①② B.①③ C.②④ D.①③④7、(4分)如图所示,已知四边形ABCD是平行四边形,下列结论中,不一定正确的是()A.△AOB的面积等于△AOD的面积 B.当AC⊥BD时,它是菱形C.当OA=OB时,它是矩形 D.△AOB的周长等于△AOD的周长8、(4分)如图,已知一次函数y=kx+b(k,b为常数,且k≠0)的图象与x轴交于点A(3,0),若正比例函数y=mx(m为常数,且m≠0)的图象与一次函数的图象相交于点P,且点P的横坐标为1,则关于x的不等式(k-m)x+b<0的解集为()A. B. C. D.二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)已知一元二次方程x2-6x+a=0有一个根为2,则另一根为_______.10、(4分)如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.11、(4分)如图,是菱形的对角线上一点,过点作于点.若,则点到边的距离为______.12、(4分)若关于x的分式方程=有增根,则m的值为_____.13、(4分)如图,在矩形ABCD中,对角线AC、BD相交于点O,点E.F分别是AO、AD的中点,若AC=8,则EF=___.三、解答题(本大题共5个小题,共48分)14、(12分)如图,平行四边形ABCD中,AB=4cm,BC=6cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①AE为何值时四边形CEDF是矩形?为什么?②AE为何值时四边形CEDF是菱形?为什么?15、(8分)春季流感爆发,有一人患了流感,经过两轮传染后共有人患了流感,(1)每轮传染中平均一个人传染了几个人?(2)经过三轮传染后共有多少人患了流感?16、(8分)小东和小明要测量校园里的一块四边形场地ABCD(如图所示)的周长,其中边CD上有水池及建筑遮挡,没有办法直接测量其长度.小东经测量得知AB=AD=5m,∠A=60°,BC=12m,∠ABC=150°.小明说根据小东所得的数据可以求出CD的长度.你同意小明的说法吗?若同意,请求出CD的长度;若不同意,请说明理由.17、(10分)(1)计算:(2)已知:如图,在△ABC中,AB=AC,点D、E、F分别是△ABC各边的中点,求证:四边形AEDF是菱形.18、(10分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)如图,已知∠EAD=30°,△ADE绕点A旋转50°后能与△ABC重合,则∠BAE=_________°.20、(4分)已知四边形ABCD为菱形,∠BAD=60°,E为AD中点,AB=6cm,P为AC上任一点.求PE+PD的最小值是_______21、(4分)如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上.若反比例函数y=kx的图像经过点C,则k的值为22、(4分)如图,在矩形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于点F,点G是EF的中点,连接CG、BG、BD、DG,下列结论:①BC=DF,②∠DGF=135o;③BG⊥DG,④若3AD=4AB,则4S△BDG=25S△DGF;正确的是____________(只填番号).23、(4分)如图,在平面直角坐标系中,矩形OABC的顶点A、C的坐标分别为,,,点P在BC(不与点B、C重合)上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为______.二、解答题(本大题共3个小题,共30分)24、(8分)甲、乙两家商场平时以同样价格出售相同的商品,春节期间两家商场都让利酬宾,其中甲商场所有商品按8折出售,乙商场对一次购物中超过200元后的价格部分打7折.
(1)以x(单位:元)表示商品原价,y(单位:元)表示购物金额,分别就两家商场的让利方式写出y关于x的函数解析式;
(2)在同一直角坐标系中画出(1)中函数的图象;
(3)春节期间如何选择这两家商场去购物更省钱?25、(10分)如图是一个多边形,你能否用一直线去截这个多边形,使得到的新多边形分别满足下列条件:画出图形,把截去的部分打上阴影新多边形内角和比原多边形的内角和增加了.新多边形的内角和与原多边形的内角和相等.新多边形的内角和比原多边形的内角和减少了.将多边形只截去一个角,截后形成的多边形的内角和为,求原多边形的边数.26、(12分)某文具店用1050元购进第一批某种钢笔,很快卖完,又用1440元购进第二批该种钢笔,但第二批每支钢笔的进价是第一批进价的1.2倍,数量比第一批多了10支.(1)求第一批每支钢笔的进价是多少元?(2)第二批钢笔按24元/支的价格销售,销售一定数量后,根据市场情况,商店决定对剩余的钢笔全按8折一次性打折销售,但要求第二批钢笔的利润率不低于20%,问至少销售多少支后开始打折?
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】分析:根据矩形的判定定理(对角线相等的平行四边形是矩形)推出即可.详解:添加的条件是AC=BD.理由是:∵AC=BD,四边形ABCD是平行四边形,∴平行四边形ABCD是矩形.故选B.点睛:本题考查了矩形的判定定理的应用,注意:对角线相等的平行四边形是矩形.2、C【解析】分析:如图,由已知条件判断AD平分∠BAC即可解决问题.详解:如图,∵DC⊥AC于C,DE⊥AB于E,且DE=DC,∴点D在∠BAC的角平分线上,∴∠1=∠1.故选C.点睛:该题主要考查了角平分线的判定及其性质的应用问题;牢固掌握角平分线的性质是解题的关键.3、B【解析】
利用矩形的边=面积÷邻边,列式计算即可.【详解】解:a=S÷b=2÷=,故选:B.此题考查二次根式的乘除法,掌握长方形面积计算公式是解决问题的根本.4、A【解析】
根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【详解】解:∵360÷40=1,
∴这个正多边形的边数是1.
故选:A.本题考查了多边形内角与外角,根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.5、D【解析】
只向下平移,让比例系数不变,常数项减去平移的单位即可.【详解】直线y=3x向下平移4个单位后所得直线的解析式为y=3x故选:D本题考查了一次函数图象与几何变换,解题的关键是熟记函数平移的规则“上加下减”.本题属于基础题,难度不大,解决该题型题目时,根据平移的规则求出平移后的函数解析式是关键.6、D【解析】
一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解;根据图象可求得x>2时y1>y2;根据x=1时求出点B点C的坐标从而求出BC的值;根据图像可确定一次函数和反比例函数在第一象限的增减性.【详解】解:①联立一次函数与反比例函数的解析式,解得,,∴A(2,2),故①正确;②由图象得x>2时,y1>y2,故②错误;③当x=1时,B(1,4),C(1,1),∴BC=3,故③正确;④一次函数y随x的增大而增大,反比例函数k>0,y随x的增大而减小.故④正确.∴①③④正确.故选D.本题主要是考查学生对两个函数图象性质的理解.这是一道常见的一次函数与反比例函数结合的题目,需要学生充分掌握一次函数和反比例函数的图象特征.理解一次函数和反比例函数的交点坐标就是一次函数与反比例函数组成的方程组的解.7、D【解析】A.∵四边形ABCD是平行四边形,∴BO=OD,∴S△AOB=S△AOD(等底同高),则A正确,不符合题意;B.当AC⊥BD时,平行四边形ABCD是菱形,正确,不符合题意;C.当OA=OB时,则AC=BD,∴平行四边形ABCD是矩形,正确,不符合题意;D.△AOB的周长=AO+OB+AB,△AOD的周长=AO+OD+AD=AO+OB+AD,∵AB≠AD,∴周长不相等,故错误,符合题意.故选D.8、B【解析】
根据函数图像分析即可解题.【详解】由函数图像可知一次函数单调递减,正比例函数单调递增,将(k-m)x+b<0变形,即kx+b<mx,对应图像意义为一次函数图像在正比例函数图像下方,即交点P的右侧,∵点P的横坐标为1,∴即为所求解集.故选B本题考查了一次函数与正比例函数的图像问题,数形结合的解题方法,中等难度,将不等式问题转化为图像问题是解题关键,二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
设方程另一根为t,根据根与系数的关系得到2+t=6,然后解一次方程即可.【详解】设方程另一根为t,
根据题意得2+t=6,
解得t=1.
故答案为1.此题考查一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系,解题关键在于掌握方程的两根为x1,x2,则x1+x2=-.10、【解析】
根据题意可得重叠部分的面积和面积相等,求出面积即可.【详解】解:如图,四边形和是正方形又故答案为:1本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.11、4【解析】
首先根据菱形的性质,可得出∠ABD=∠CBD,然后根据角平分线的性质,即可得解.【详解】解:∵四边形ABCD为菱形,BD为其对角线∴∠ABD=∠CBD,即BD为角平分线∴点E到边AB的距离等于EF,即为4.此题主要考查菱形和角平分线的性质,熟练运用,即可解题.12、3【解析】
增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-2=0,得到x=2,然后代入化为整式方程的方程算出m的值.【详解】解:去分母得:3x=m+3,由分式方程有增根,得到x﹣2=0,即x=2,把x=2代入方程得:6=m+3,解得:m=3,故答案为:3此题考查分式方程的增根,解题关键在于得到x的值.13、2【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.【详解】∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=8三、解答题(本大题共5个小题,共48分)14、(1)见解析;(2)①当AE=4cm时,四边形CEDF是矩形.理由见解析;②当AE=2时,四边形CEDF是菱形,理由见解析.【解析】
(1)先证△GED≌△GFC,推出DE=CF和DE∥CF,再根据平行四边形的判定推出即可;(2)①作AP⊥BC于P,先证明△ABP≌△CDE,然后求出DE的值即可得出答案;②先证明△CDE是等边三角形,然后求出DE的值即可得出答案.【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵G是CD的中点,∴GD=GC,∴△GED≌△GFC,∴DE=CF,DE∥CF,∴四边形CEDF是平行四边形,(2)①当AE=4cm时,四边形CEDF是矩形.理由:作AP⊥BC于P,∵四边形CEDF是矩形,∴∠CED=∠APB=90°,∴AP=CE,又∵ABCD是平行四边形,∴AB=CD=4cm,则△ABP≌△CDE(HL),∴BP=DE,∵AB=4cm,∠B=60°,∴BP=AB×cos60°=4×=2(cm),∴BP=DE=2cm,又∵BC=AD=6cm,∴AE=AD-DE=6-2=4(cm);.②当AE=2时,四边形CEDF是菱形.理由:∵平行四边形CEDF是菱形,∴DE=CE,又∵∠CDE=∠B=60°,∴△CDE是等边三角形,∵四边形ABCD是平行四边形,∴AB=CD=4cm,DE=CD=4cm,∵BC=AD=6cm,则AE=AD-DE=6-4=2(cm).本题考查了平行四边形的判定和性质,等边三角形的判定和性质,全等三角形的判定和性质以及三角函数应用,注意:有一组对边平行且相等的四边形是平行四边形.15、(1)每轮传染中平均一个人传染8个人;(2)经过三轮传染后共有729人会患流感.【解析】
(1)设每轮传染中平均一个人传染x个人,根据经过两轮传染后共有81人患了流感,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据经过三轮传染后患流感的人数=经过两轮传染后患流感的人数+经过两轮传染后患流感的人数×8,即可求出结论.【详解】解:(1)设每轮传染中平均一个人传染x个人,
根据题意得:1+x+x(x+1)=81,
整理,得:x2+2x-80=0,
解得:x1=8,x2=-10(不合题意,舍去).
答:每轮传染中平均一个人传染8个人.
(2)81+81×8=729(人).
答:经过三轮传染后共有729人会患流感.本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.16、同意,CD=13m.【解析】
直接利用等边三角形的判定方法得出△ABD是等边三角形,再利用勾股定理得出答案.【详解】同意连接BD,如图∵AB=AD=5(m),∠A=60°∴△ABD是等边三角形∴BD=AB=5(m),∠ABD=60°∴∠ABC=150°,∴∠CBD=∠ABC-∠ABD=150°-60°=90°在Rt△CBD中,BD=5(m),BC=12(m),∴CD=B答:CD的长度为13m.此题主要考查了勾股定理的应用以及等边三角形的判定,正确得出△ABD是等边三角形是解题关键.17、(1);(2)详见解析【解析】
(1)首先计算绝对值、化简二次根式、立方根,然后再计算加减即可;(2)利用中位线定理可得ED∥AC,ED=AC,DF∥AB,DF=AB,利用两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形,再证明ED=FD可得结论.【详解】(1)==;(2)证明:∵D,E,F分別是BC,AB,AC的中点,∴ED∥AC,ED=AC,DF∥AB,DF=AB,∵ED∥AC,DF∥AB,∴四边形AEDF是平行四边形,∵AB=AC,∴ED=FD,∴四边形AEDF是菱形.此题主要考查了实数的计算和菱形的判定,关键是掌握三角形的中位线平行于第三边,并且等于第三边的一半;一组邻边相等的平行四边形是菱形.18、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解析】
由菱形的判定及其性质求解可得.【详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)此题考查菱形的判定,掌握判定定理是解题关键.一、填空题(本大题共5个小题,每小题4分,共20分)19、20【解析】
利用旋转的性质得出∠DAB=50°,进而得出∠BAE的度数.【详解】解:∵∠EAD=30°,△ADE绕着点A旋转50°后能与△ABC重合,∴∠DAB=50°,则∠BAE=∠DAB-∠DAE=50°-30°=20°.故答案为:20.此题主要考查了旋转的性质,得出旋转角∠DAB的度数是解题关键.20、【解析】
根据菱形的性质,可得AC是BD的垂直平分线,可得AC上的点到D、B点的距离相等,连接BE交AC与P,可得答案.【详解】解:∵菱形的性质,
∴AC是BD的垂直平分线,AC上的点到B、D的距离相等.
连接BE交AC于P点,
PD=PB,
PE+PD=PE+PB=BE,
在Rt△ABE中,由勾股定理得故答案为3本题考查了轴对称,对称轴上的点到线段两端点的距离相等是解题关键.21、1【解析】
过点C作CE⊥y轴于E,根据正方形的性质可得AB=BC,∠ABC=90°,再根据同角的余角相等求出∠OAB=∠CBE,然后利用“角角边”证明ΔABO和ΔBCE全等,根据全等三角形对应边相等可得OA=BE=8,CE=OB=6,再求出OE,然后写出点C的坐标,再把点C的坐标代入反比例函数解析式计算即可求出k的值.【详解】解:如图,过点C作CE⊥y轴于E,在正方形ABCD中,AB=BC,∠ABC=90°,∴∠ABO+∠CBE=90°,∵∠OAB+∠ABO=90°,∴∠OAB=∠CBE,∵点A的坐标为(-8,0),∴OA=8,∵AB=10,∴OB=10在ΔABO和ΔBCE中,∠OAB=∠CBE∠AOB=∠BEC∴ΔABO≅ΔBCE(AAS),∴OA=BE=8,CE=OB=6,∴OE=BE-OB=8-6=2,∴点C的坐标为(6,2),∵反比例函数y=kx(k≠0)∴k=xy=2×6=12,故答案为1.本题考查的是反比例函数图象上点的坐标特点,涉及到正方形的性质,全等三角形的判定与性质,反比例函数图象上的点的坐标特征,作辅助线构造出全等三角形并求出点C的坐标是解题的关键.22、①③④【解析】
根据矩形的性质得:BC=AD,∠BAD=∠ADC=90°,由角平分线可得△ADF是等腰直角三角形,则BC=DF=AD,故①正确;先求出∠BAE=45°,判断出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AB=BE,∠AEB=45°,从而得到BE=CD;再求出△CEF是等腰直角三角形,根据等腰直角三角形的性质可得CG=EG,再求出∠BEG=∠DCG=135°,然后利用“边角边”证明△BEG≌△DCG,得到∠BGE=∠DGC,由∠BGE<∠AEB,得到∠DGC=∠BGE<45°,∠DGF<135°,故②错误;由全等三角形的性质可得∠BGE=∠DGC,即可得到③正确;由△BGD是等腰直角三角形得到BD=5a,求得S△BDG,过G作GM⊥CF于M,求得S△DGF,进而得出答案.【详解】∵四边形ABCD是矩形,∴BC=AD,∠BAD=∠ADC=90°.∵AF平分∠BAD,∴∠BAE=∠DAF=45°,∴△ADF是等腰直角三角形,∴DF=AD,∴BC=DF,故选项①正确;∵AE平分∠BAD,∴∠BAE=45°,∴△ABE是等腰直角三角形,∴AB=BE,∠AEB=45°.∵AB=CD,∴BE=CD;∵∠CEF=∠AEB=45°,∠ECF=90°,∴△CEF是等腰直角三角形.∵点G为EF的中点,∴CG=EG,∠FCG=45°,∴∠BEG=∠DCG=135°.在△BEG和△DCG中,∵,∴△BEG≌△DCG(SAS),∴∠BGE=∠DGC.∵∠BGE<∠AEB,∴∠DGC=∠BGE<45°.∵∠CGF=90°,∴∠DGF<135°,故②错误;∵△BEG≌△DCG,∴∠BGE=∠DGC,BG=DG.∵∠EGC=90°,∴∠BGD=90°,∴BG⊥DG,故③正确;∵3AD=4AB,∴,∴设AB=3a,则AD=4a.∵BD=5a,∴BG=DGa,∴S△BDGa1.过G作GM⊥CF于M.∵CE=CF=BC﹣BE=BC﹣AB=a,∴GMCFa,∴S△DGF•DF•GM4aa=a1,∴S△BDGS△DGF,∴4S△BDG=15S△DGF,故④正确.故答案为①③④.本题考查了矩形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质;熟练掌握矩形的性质,证明三角形全等和等腰直角三角形是解决问题的关键.23、(1,3)或(4,3)【解析】
根据△ODP是腰长为5的等腰三角形,因此要分类讨论到底是哪两条腰相等:①PD=OD为锐角三角形;②OP=OD;③OD=PD为钝角三角形,注意不重不漏.【详解】∵C(0,3),A(9,0)∴B的坐标为(9,3)①当P运动到图①所示的位置时此时DO=PD=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4∴OE=OD-DE=1此时P点的坐标为(1,3);②当P运动到图②所示的位置时此时DO=PO=5过点P作PE⊥OA于点E,在RT△OPE中,根据勾股定理4此时P点的坐标为(4,3);③当P运动到图③所示的位置时此时OD=PD=5过点P作PE⊥OA于点E在RT△OPE中,根据勾股定理4∴OE=OD+DE=9此时P点的坐标为(9,3),此时P点与B点重合,故不符合题意.综上所述,P的坐标为(1,3)或(4,3)本题主要考查等腰三角形的判定以及勾股定理的应用.二、解答题(本大题共3个小题,共30分)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024幼儿园租赁合同-附幼儿教育资源共享条款3篇
- 2024年电动车以旧换新购销合同
- 2025版环保项目可行性研究报告编制合同集3篇
- 2024年石材翻新服务协议3篇
- 2024年餐饮租赁房产协议免责事项精确描述版B版
- 2025年度航空航天发动机零部件加工劳务分包合同3篇
- 2025年度建筑工地安全施工管理服务协议
- 2024年电气设备修理协议3篇
- 2024年版土地出让代理协议模板版B版
- 2024年度智能家居安装工程合同
- 高校人力资源管理系统
- 关于更换公务用车的请示
- 国外发达国家中水回用现状
- 室分工程施工组织设计
- 远洋渔船项目可行性研究报告模板
- 塔塔里尼调压器FLBM5介绍.ppt
- 相亲相爱一家人简谱
- CCC例行检验和确认检验程序
- 验收合格证明(共9页)
- 苏强格命名规则
- 初中物理竞赛教程(基础篇)第16讲比热容
评论
0/150
提交评论