江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题含解析_第1页
江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题含解析_第2页
江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题含解析_第3页
江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题含解析_第4页
江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏南通市2025届高一数学第一学期期末教学质量检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点个数为(

)A.1 B.2C.3 D.42.已知函数,且在上的最大值为,若函数有四个不同的零点,则实数a的取值范围为()A. B.C. D.3.已知函数,若f(a)=10,则a的值是()A.-3或5 B.3或-3C.-3 D.3或-3或54.已知函数,若对任意,总存在,使得,则实数的取值范围是()A. B.C. D.5.设全集,集合,则()A. B.C. D.6.若,则的最小值是()A. B.C. D.7.设全集,,,则A. B.C. D.8.,,,则()A. B.C. D.9.已知函数在[-2,1]上具有单调性,则实数k的取值范围是()A.k≤-8 B.k≥4C.k≤-8或k≥4 D.-8≤k≤410.函数的值域为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知函数(1)利用五点法画函数在区间上的图象(2)已知函数,若函数的最小正周期为,求的值域和单调递增区间;(3)若方程在上有根,求的取值范围12.如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是________13.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________14.已知点为圆上的动点,则的最小值为__________15.已知函数,若对任意的、,,都有成立,则实数的取值范围是______.16.若向量,,且,则_____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知是同一平面内的三个向量,其中(1)若,且,求的坐标;(2)若,且与的夹角为,求的值18.已知函数,其中m为实数(1)求f(x)的定义域;(2)当时,求f(x)的值域;(3)求f(x)的最小值19.已知函数(,为常数,且)的图象经过点,(1)求函数的解析式;(2)若关于不等式对都成立,求实数的取值范围20.已知函数f(x)=2sin2(x+)-2cos(x-)-5a+2(1)设t=sinx+cosx,将函数f(x)表示为关于t的函数g(t),求g(t)的解析式;(2)对任意x∈[0,],不等式f(x)≥6-2a恒成立,求a的取值范围21.降噪耳机主要有主动降噪耳机和被动降噪耳机两种.其中主动降噪耳机的工作原理是:先通过微型麦克风采集周围的噪声,然后降噪芯片生成与噪声振幅相同、相位相反的反向声波来抵消噪声(如图所示).已知某噪声的声波曲线是,其中的振幅为2,且经过点.(1)求该噪声声波曲线的解析式以及降噪芯片生成的降噪声波曲线的解析式;(2)将函数图象上各点的横坐标变为原来的倍,纵坐标不变得到函数的图象.若锐角满足,求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】函数的定义域为,且,即函数为偶函数,当时,,设,则:,据此可得:,据此有:,即函数是区间上的减函数,由函数的解析式可知:,则函数在区间上有一个零点,结合函数的奇偶性可得函数在R上有2个零点.本题选择B选项.点睛:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点2、B【解析】由在上最大值为,讨论可求出,从而,若有4个零点,则函数与有4个交点,画出图象,结合图象求解即可【详解】若,则函数在上单调递增,所以的最小值为,不合题意,则,要使函数在上的最大值为如果,即,则,解得,不合题意;若,即,则解得即,则如图所示,若有4个零点,则函数与有4个交点,只有函数的图象开口向上,即当与)有一个交点时,方程有一个根,得,此时函数有二个不同的零点,要使函数有四个不同的零点,与有两个交点,则抛物线的图象开口要比的图象开口大,可得,所以,即实数a的取值范围为故选:B【点睛】关键点点睛:此题考查函数与方程的综合应用,考查二次函数的性质的应用,考查数形结合的思想,解题的关键是由已知条件求出的值,然后将问题转化为函数与有4个交点,画出函数图象,结合图象求解即可,属于较难题3、A【解析】根据分段函数的解析式,分两种情况讨论分别求得或.【详解】若,则舍去),若,则,综上可得,或,故选A.【点睛】本题主要考查分段函数的解析式、分段函数求自变量,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.4、C【解析】先将不等式转化为对应函数最值问题:,再根据函数单调性求最值,最后解不等式得结果.【详解】因为对任意,总存在,使得,所以,因为当且仅当时取等号,所以,因为,所以.故选:C.【点睛】对于不等式任意或存在性问题,一般转化为对应函数最值大小关系,即;,5、A【解析】根据补集定义计算.【详解】因为集合,又因为全集,所以,.故选:A.【点睛】本题考查补集运算,属于简单题.6、A【解析】先由得到,利用基本不等式“1的妙用”即可求出最小值.【详解】因为,所以且,所以且,即,所以当且仅当时,即时等号成立.故选:A7、B【解析】全集,,,.故选B.8、B【解析】根据对数函数和指数函数的单调性即可得出,,的大小关系【详解】,,,故选:9、C【解析】根据二次函数的单调性和对称轴之间的关系,建立条件求解即可.【详解】函数对称轴为,要使在区间[-2,1]上具有单调性,则或,∴或综上所述的范围是:k≤-8或k≥4.故选:C.10、C【解析】由二倍角公式化简,设,利用复合函数求值域.【详解】函数,设,,则,由二次函数的图像及性质可知,所以的值域为,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、(1)(2)的值域为,单调递增区间为;(3)【解析】(1)取特殊点,列表,描点,连线,画出函数图象;(2)化简得到的解析式,进而求出值域,整体法求解单调递增区间;(3)整体法先得到,换元后得到在上有根,进而求出的取值范围.【小问1详解】作出表格如下:x0020-20在平面直角坐标系中标出以下五点,,,,,,用平滑的曲线连接起来,就是函数在区间上的图象,如下图:【小问2详解】,其中,由题意得:,解得:,故,故的值域为,令,解得:,所以的单调递增区间为:【小问3详解】因为,所以,则,令,则,所以方程在上有根等价于在上有根,因为,所以,解得:,故的取值范围是.12、{x|-1<x≤1}【解析】先作函数图象,再求交点,最后根据图象确定解集.【详解】令g(x)=y=log2(x+1),作出函数g(x)的图象如图由得∴结合图象知不等式f(x)≥log2(x+1)的解集为{x|-1<x≤1}【点睛】本题考查函数图象应用,考查基本分析求解能力.13、(0,1)【解析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【点睛】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.14、-4【解析】点为圆上的动点,所以.由,所以当时有最小值-4.故答案为-4.15、【解析】分析出函数为上的减函数,结合已知条件可得出关于实数的不等式组,由此可解得实数的取值范围.【详解】设,则,由可得,即,所以,函数为上的减函数.由于,由题意可知,函数在上为减函数,则,函数在上为减函数,则,且有,所以,解得.因此,实数的取值范围是.故答案:.【点睛】关键点点睛:在利用分段函数的单调性求参数时,除了分析每支函数的单调性外,还应由间断点处函数值的大小关系得出关于参数的不等式组求解.16、6【解析】本题首先可通过题意得出向量以及向量的坐标表示和向量与向量之间的关系,然后通过向量平行的相关性质即可得出结果。【详解】因为,,且,所以,解得。【点睛】本题考查向量的相关性质,主要考查向量平行的相关性质,若向量,,,则有,锻炼了学生对于向量公式的使用,是简单题。三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)或(2)【解析】(1)由可设,再由可得答案(2)由数量积的定义可得,代入即可得答案【详解】解:(1)由可设,∵,∴,∴,∴或(2)∵与的夹角为,∴,∴【点睛】本题考查向量的基本运算,属于简单题18、(1)(2)[2,2](3)当时,f(x)的最小值为2;当时,f(x)的最小值为【解析】(1)根据函数解析式列出相应的不等式组,即可求得函数定义域;(2)令,采用两边平方的方法,即可求得答案;(3)仿(2),令,可得,从而将变为关于t的二次函数,然后根据在给定区间上的二次函数的最值问题求解方法,分类讨论求得答案.【小问1详解】由解得所以f(x)的定义域为【小问2详解】当时,设,则当时,取得最大值8;当或时,取得最小值4所以的取值范围是[4,8]所以f(x)的值城为[2,2]【小问3详解】设,由(2)知,,且,则令,,若,,此时的最小值为;若,当时,在[2,2上单调递增,此时的最小值为;当,即时,,此时的最小值为;当,即时,,此时的最小值为所以,当时,f(x)的最小值为2;当时,f(x)的最小值为19、(1)(2)【解析】(1)将,,代入函数,利用待定系数法即可得出答案;(2)对都成立,即,,令,,令,求出函数的最小值即可得解.【小问1详解】解:∵函数的图象经过点,,∴,即,又∵,∴,,∴,即;【小问2详解】解:由(1)知,,∴对都成立,即对都成立,∴,,令,,则,令,即,,∴的图象是开口向下且关于直线对称的抛物线,∴,∴,∴的取值区间为20、(1),;(2)【解析】:(1)首先由两角和的正弦公式可得,进而即可求出的取值范围;接下来对已知的函数利用进行表示;对于(2),首先由的取值范围,求出的取值范围,再对已知进行恒等变形可得在区间上恒成立,据此即可得到关于的不等式,解不等式即可求出的取值范围.试题解析:(1),因为,所以,其中,即,.(2)由(1)知,当时,,又在区间上单调递增,所以,从而,要使不等式在区间上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论