2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题含解析_第1页
2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题含解析_第2页
2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题含解析_第3页
2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题含解析_第4页
2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届云南省迪庆州维西县第二中学高一数学第一学期期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.102.与-2022°终边相同的最小正角是()A.138° B.132°C.58° D.42°3.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④4.下列各组函数表示同一函数的是()A., B.,C., D.,5.集合{0,1,2}的所有真子集的个数是A.5 B.6C.7 D.86.若,为第四象限角,则的值为()A. B.C. D.7.的外接圆的圆心为O,半径为1,若,且,则的面积为()A. B.C. D.18.已知集合A={t2+s2|t,s∈Z},且x∈A,y∈A,则下列结论正确的是Ax+y∈AB.x-y∈AC.xy∈AD.9.若函数的图象如图所示,则下列函数与其图象相符的是A. B.C. D.10.已知是角的终边上的点,则()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.函数的最小值为_________________12.已知,,则的最小值是___________.13.设x,.若,且,则的最大值为___14.两个球的体积之比为8:27,则这两个球的表面积之比为________.15.已知函数,,则________16.已知圆:,为圆上一点,、、,则的最大值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数,当时,取得最小值(1)求a的值;(2)若函数有4个零点,求t的取值范围18.已知偶函数.(1)求实数的值;(2)经过研究可知,函数在区间上单调递减,求满足条件的实数a的取值范围.19.(1)已知,,求;(2)已知,,求、的值;(3)已知,,且,求的值.20.已知,(1)求的值;(2)求的值21.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),每件的销售价格(单位:元)与时间x(单位:天)的函数关系近似满足,日销售量(单位:件)与时间x(单位:天)的部分数据如下表所示:x10152025305055605550(1)给出以下四个函数模型:①;②;③;④请你根据上表中的数据,从中选择你认为最合适的一种函数模型来描述日销售量与时间x的变化关系,并求出该函数的解析式;(2)设该工艺品的日销售收入为(单位:元),求的最小值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C2、A【解析】根据任意角的周期性,将-2022°化为,即可确定最小正角.【详解】由-2022°,所以与-2022°终边相同的最小正角是138°.故选:A3、A【解析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A4、A【解析】根据相同函数的定义,分别判断各个选项函数的定义域和对应关系是否都相同,即可得出答案.【详解】解:对于A,两个函数的定义域都是,,对应关系完全一致,所以两函数是相同函数,故A符合题意;对于B,函数的定义域为,函数的定义域为,故两函数不是相同函数,故B不符题意;对于C,函数的定义域为,函数的定义域为,故两函数不是相同函数,故C不符题意;对于D,函数的定义域为,函数的定义域为,故两函数不是相同函数,故D不符题意.故选:A.5、C【解析】集合{0,1,2}中有三个元素,因此其真子集个数为.故选:C.6、D【解析】直接利用平方关系即可得解.【详解】解:因为,为第四象限角,所以.故选:D.7、B【解析】由,利用向量加法的几何意义得出△ABC是以A为直角的直角三角形,又|,从而可求|AC|,|AB|的值,利用三角形面积公式即可得解【详解】由于,由向量加法的几何意义,O为边BC中点,∵△ABC的外接圆的圆心为O,半径为1,∴三角形应该是以BC边为斜边的直角三角形,∠BAC=,斜边BC=2,又∵∴|AC|=1,|AB|=,∴S△ABC=,故选B.【点睛】本题主要考查了平面向量及应用,三角形面积的求法,属于基础题8、C【解析】∵集合A={t2+s2∣∣t,s∈Z},∴1∈A,2∈A,1+2=3∉A,故A“x+y∈A”错误;又∵1−2=−1∉A,故B“x−y∈A”错误;又∵,故D“∈A”错误;对于C,由,设,且.则.且,所以.故选C.9、B【解析】由函数的图象可知,函数,则下图中对于选项A,是减函数,所以A错误;对于选项B,的图象是正确的;对C,是减函数,故C错;对D,函数是减函数,故D错误。故选B10、A【解析】根据三角函数的定义求解即可.【详解】因为为角终边上的一点,所以,,,所以故选:A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】利用同角三角函数的基本关系,化简函数的解析式,配方利用二次函数的性质,求得y的最小值【详解】y=sin2x﹣2cosx+2=3﹣cos2x﹣2cosx=﹣(cosx+1)2+4,故当cosx=1时,y有最小值等于0,故答案为0【点睛】本题考查同角三角函数的基本关系的应用,二次函数的图象与性质,把函数配方是解题的关键12、【解析】化简函数,由,得到,结合三角函数的性质,即可求解.【详解】由题意,函数,因为,可得,当时,即时,函数取得最小值.故答案为:.13、##1.5【解析】由化简得,再由基本不等式可求得,从而确定最大值【详解】,,,,,,,当且仅当时即取等号,,解得,故,故的最大值为,故答案为:14、【解析】设两球半径分别为,由可得,所以.即两球的表面积之比为考点:球的表面积,体积公式.15、【解析】发现,计算可得结果.【详解】因为,,且,则.故答案为-2【点睛】本题主要考查函数的性质,由函数解析式,计算发现是关键,属于中档题.16、53【解析】设,则,从而求出,再根据的取值范围,求出式子的最大值.【详解】设,因为为圆上一点,则,且,则(当且仅当时取得最大值),故答案为:53.【点睛】本题属于圆与距离的应用问题,主要考查代数式的最值求法.解决此类问题一是要将题设条件转化为相应代数式;二是要确定代数式中变量的取值范围.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)4(2)【解析】(1)分类讨论和两种情况,由其单调性得出a的值;(2)令,结合一元二次方程根的分布得出t的取值范围【小问1详解】解:当时,,则,故没有最小值当时,由,得,则在上单调递减,在上单调递增,故,即【小问2详解】的图象如图所示令,则函数在上有2个零点,得解得,故t的取值范围为18、(1)0(2)【解析】(1)首先求出函数的定义域,再根据偶函数的性质,利用特殊值求出参数的值,再代入检验即可;(2)根据偶函数的性质将函数不等式转化为自变量的不等式,解得即可.【小问1详解】解:由,有,可得函数的定义域为,,由函数为偶函数,有,解得.当时,,由,可知此时函数为偶函数,符合题意,由上知实数m的值为0;【小问2详解】解:由函数为偶函数,且函数在区间上单调递减,可得函数在区间上单调递增,若,有解得且,故实数a的取值范围为.19、(1);(2),;(3).【解析】(1)利用两角差的正切公式即可求解;(2)利用二倍角公式即可求解;(3)利用和差角公式即可求解.【详解】(1)因为,,所以,即.(2)因为,可得,所以,,因此,,.(3)由,则,,得.因为,所以.由,则,,得,由以及,得.因为,又,所以.20、(1);(2).【解析】(1)先根据的值和二者的平方关系联立求得的值,再把平方即可求出;(2)结合(1)求,的值,最后利用商数关系求得的值,代入即可得解【详解】(1)∵,∴,∴,∵,∴,,,∴,∴.(2)由,,解得,,∴∵,,∴【点睛】方法点睛:三角恒等常用的方法:三看(看角、看名、看式),三变(变角、变名、变式).21、(1)选择模型②:,;(2)441.【解析】(1)根据表格数据的变化趋势选择函数模型,再将数据代入解析式求参数值,即可得解析式.(2)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论