版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省绥化市安达七中2025届高二数学第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,,则在上的投影向量为()A.1 B.C. D.2.已知圆C的方程为,点P在圆C上,O是坐标原点,则的最小值为()A.3 B.C. D.3.若复数满足,则复数对应的点的轨迹围成图形的面积等于()A. B.C. D.4.已知双曲线=1的一条渐近线方程为x-4y=0,其虚轴长为()A.16 B.8C.2 D.15.若公差不为0的等差数列的前n项和是,,且,,为等比数列,则使成立的最大n是()A.6 B.10C.11 D.126.已知数列是等差数列,其前n项和为,则下列说法错误的是()A.数列一定是等比数列 B.数列一定是等差数列C.数列一定是等差数列 D.数列可能是常数数列7.在空间直角坐标系中,,,平面的一个法向量为,则平面与平面夹角的正弦值为()A. B.C. D.8.已知是两个数1,9的等比中项,则圆锥曲线的离心率为()A.或 B.或C. D.9.已知是两条不同的直线,是两个不同的平面,则下列结论正确的是()A.若,则 B.若,则C.若,则 D.若,则10.双曲线的渐近线方程是()A. B.C. D.11.直线分别与轴,轴交于A,B两点,点在圆上,则面积的取值范围是()A B.C. D.12.已知是空间的一个基底,,,,若四点共面.则实数的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知点P是双曲线右支上的一点,且以点P及焦点为定点的三角形的面积为4,则点P的坐标是_____________14.设、、是三个不同的平面,、是两条不同的直线,给出下列三个结论:①若,,则;②若,,则;③若,,则其中,正确结论的序号为__15.二进制数转化成十进制数为______.16.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点,均在轴上,且,的面积为,则的标准方程为______三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列满足,记数列的前项和为,且,(1)求数列的通项公式;(2)若,求数列的前100项和18.(12分)已知圆的圆心在直线上,且圆经过点与点.(1)求圆的方程;(2)过点作圆的切线,求切线所在的直线的方程.19.(12分)已知抛物线C:x2=2py的焦点为F,点N(t,1)在抛物线C上,且|NF|=.(1)求抛物线C的方程;(2)过点M(0,1)的直线l交抛物线C于不同的两点A,B,设O为坐标原点,直线OA,OB的斜率分别为k1,k2,求证:k1k2为定值.20.(12分)已知如图①,在菱形ABCD中,且,为AD的中点,将沿BE折起使,得到如图②所示的四棱锥,在四棱锥中,求解下列问题:(1)求证:BC平面ABE;(2)若P为AC中点,求二面角的余弦值.21.(12分)已知函数.(1)当时,求曲线在点处的切线方程;(2)若,且,讨论函数的零点个数.22.(10分)在数列中,,.(1)证明:数列为等比数列,并求数列的通项公式;(2)求数列的前项和.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】根据题意得,进而根据投影向量的概念求解即可.【详解】解:因为,,所以,所以,所以在上的投影向量为故选:C2、B【解析】化简判断圆心和半径,利用圆的性质判断连接线段OC,交圆于点P时最小,再计算求值即得结果.【详解】化简得圆C的标准方程为,故圆心是,半径,则连接线段OC,交圆于点P时最小,因为原点到圆心的距离,故此时.故选:B.3、D【解析】利用复数的几何意义,即可判断轨迹图形,再求面积.【详解】复数满足,表示复数对应的点的轨迹是以点为圆心,半径为3的圆,所以围成图形的面积等于.故选:D4、C【解析】根据双曲线的渐近线方程的特点,结合虚轴长的定义进行求解即可.【详解】因为双曲线=1的一条渐近线方程为x-4y=0,所以,因此该双曲线的虚轴长为,故选:C5、C【解析】设等差数列的公差为d,根据,且,,为等比数列,求得首项和公差,再利用前n项和公式求解.【详解】设等差数列的公差为d,因为,且,,为等比数列,所以,解得或(舍去),则,所以,解得,所以使成立的最大n是11,故选:C6、B【解析】可根据已知条件,设出公差为,选项A,可借助等比数列的定义使用数列是等差数列,来进行判定;选项B,数列,可以取,即可判断;选项C,可设,表示出再进行判断;选项D,可采用换元,令,求得的关系即可判断.【详解】数列是等差数列,设公差为,选项A,数列是等差数列,那么为常数,又,则数列一定是等比数列,所以选项A正确;选项B,当时,数列不存在,故该选项错误;选项C,数列是等差数列,可设(A、B为常数),此时,,则为常数,故数列一定是等差数列,所以该选项正确;选项D,,则,当时,,此时数列可能是常数数列,故该选项正确.故选:B.7、A【解析】根据给定条件求出平面的法向量,再借助空间向量夹角公式即可计算作答.【详解】设平面的法向量为,则,令,得,令平面与平面夹角为,则,,所以平面与平面夹角的正弦值为.故选:A8、A【解析】根据题意可知,当时,根据椭圆离心率公式,即可求出结果;当时,根据双曲线离心率公式,即可求出结果.【详解】因为是两个数1,9的等比中项,所以,所以,当时,圆锥曲线,其离心率为;当时,圆锥曲线,其离心率为;综上,圆锥曲线的离心率为或.故选:A.9、C【解析】由空间中直线与直线、直线与平面、平面与平面的位置关系,逐一核对四个选项得答案【详解】解:对于A:若,则或,故A错误;对于B:若,则或与相交,故B错误;对于C:若,根据面面垂直的判定定理可得,故C正确;对于D:若则与平行、相交、或异面,故D错误;故选:C10、A【解析】先将双曲线的方程化为标准方程得,再根据双曲线渐近线方程求解即可.【详解】解:将双曲线的方程化为标准方程得,所以,所以其渐近线方程为:,即.故选:A.11、A【解析】把求面积转化为求底边和底边上的高,高就是圆上点到直线的距离.【详解】与x,y轴的交点,分别为,,点在圆,即上,所以,圆心到直线距离为,所以面积的最小值为,最大值为.故选:A12、A【解析】由共面定理列式得,再根据对应系数相等计算.【详解】因为四点共面,设存在有序数对使得,则,即,所以得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题可得P到x轴的距离为1,把代入,得,可得P点坐标【详解】设,由题意知,所以,则,由题意可得,把代入,得,所以P点坐标为故答案为:14、①②【解析】利用线面垂直的性质可判断命题①、②的正误;利用特例法可判断命题③的正误.综合可得出结论.【详解】、、是三个不同的平面,、是两条不同的直线.对于①,若,,由同垂直于同一平面的两直线平行,可得,故①正确;对于②,若,,由同垂直于同一直线的两平面平行,可得,故②正确;对于③,若,,考虑墙角处的三个平面两两垂直,可判断、相交,则不正确故答案为:①②【点睛】本题考查空间中线面、面面位置关系有关命题真假的判断,考查推理能力,属于基础题.15、13【解析】根据二进制数和十进制数之间的转换方法即可求解.【详解】.故答案为:13.16、【解析】利用待定系数法列出关于的方程解出即可得结果.【详解】设的标准方程为,则解得所以的标准方程为故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】(1)由题意得出,然后与原式结合,两式相减并化简求出,最后根据等差数列的定义求得答案;(2)结合(1),分别讨论,和三种情况,分别求出,进而求出.【小问1详解】因为,所以,两式相减得,所以又,所以数列是首项为,公差为2的等差数列,所以.【小问2详解】由得,当时,,当时,,当时,,所以.18、(1);(2)或.【解析】(1)求出线段中点,进而得到线段的垂直平分线为,与联立得交点,∴.则圆的方程可求(2)当切线斜率不存在时,可知切线方程为.当切线斜率存在时,设切线方程为,由到此直线的距离为,解得,即可到切线所在直线的方程.试题解析:(1)线段的中点为,∵,∴线段的垂直平分线为,与联立得交点,∴.∴圆的方程为.(2)当切线斜率不存在时,切线方程为.当切线斜率存在时,设切线方程为,即,则到此直线的距离为,解得,∴切线方程为.故满足条件的切线方程为或.【点睛】本题考查圆的方程的求法,圆的切线,中点弦等问题,解题的关键是利用圆的特性,利用点到直线的距离公式求解19、(1)x2=2y;(2)证明见解析【解析】(1)利用抛物线的定义进行求解即可;(2)设直线l的直线方程与抛物线方程联立,根据一元二次方程根与系数关系、斜率公式进行证明即可.【小问1详解】∵点N(t,1)在抛物线C:x2=2py上,且|NF|=,∴|NF|=,解得p=1,∴抛物线C的方程为x2=2y;【小问2详解】依题意,设直线l:y=kx+1,A(x1,y1),B(x2,y2),联立,得x2﹣2kx﹣2=0.则x1x2=﹣2,∴.故k1k2为定值.【点睛】关键点睛:利用抛物线的定义是解题的关键.20、(1)证明见解析;(2)【解析】(1)利用题中所给的条件证明,,因为,所以,,即可证明平面;(2)先证明平面,以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系,求出平面的一个法向量,平面的一个法向量,利用向量的夹角公式即可求解【详解】(1)在图①中,连接,如图所示:因为四边形为菱形,,所以是等边三角形.因为为的中点,所以,.又,所以.在图②中,,所以,即.因为,所以,.又,,平面.所以平面.(2)由(1)知,,因为,,平面.所以平面.以为坐标原点,,,的方向分别为轴,轴,轴,建立如图所示的空间直角坐标系:则,,,,.因为为的中点,所以.所以,.设平面的一个法向量为,由得.令,得,,所以.设平面的一个法向量为.因为,由得令,,,得则,由图象可知二面角为锐角,所以二面角的余弦值为.21、(1).(2)答案见解析.【解析】(1)求导函数,求得,,由此可求得曲线在点处的切线方程;(2)求得导函数,分和讨论,当时,设,求导函数,分析导函数的符号,得出所令函数的单调性,从而得函数的单调性,根据零点存在定理可得答案.【小问1详解】解:当时,,所以,故,,所以曲线在点处的切线方程为.【小问2详解】解:依题意,则,当时,,所以在上单调递增;当时,设,此时,所以在上单调递增,又,,所以存在,使得,且在上单调递减,在上单调递增.综上所述,在上
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 污水处理厂排水沟施工合同范本
- 线下体验店手机店租赁合同
- 电影拍摄水车租赁合同
- 商场监控安装协议书
- 保健品研发人员聘用合同样本
- 体育场馆人防施工合同
- 2023年上海市中考物理复习-专题9 数据表格 题型4 电
- 员工反馈协议
- 2022年中考物理复习欧姆定律计算专题-结合图像问题
- 市政资源优化房屋拆迁施工合同
- ISO9001 2015版质量管理体系标准
- 影视鉴赏高职PPT完整全套教学课件
- 学而不思则罔-初中期中考试总结主题班会课件
- 石河子大学辅导员考试题库
- 从小学理财课件
- 高中生物选修2《生物与环境》(人教版)种群及其动态单元教学设计
- 森林防火智能监测预警指挥系统建设方案-
- 内蒙古自治区呼和浩特市单招综合素质真题(含答案)
- 2023汽车智能座舱分级与综合评价白皮书
- 2023学年完整公开课版冰粉的制作
- 温室效应的定义及原因影响和对策PPT
评论
0/150
提交评论